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a b s t r a c t

Methods for on-site measurement of building thermal performance system parameters such as coeffi-
cient of heat loss, solar heat gain, effective thermal capacity, infiltration rate, and effective mixing volume
are very important, yet a nontrivial task. Although these are steady-state parameters, on-site
measurements are exposed to changing meteorological conditions and are affected by the thermal
capacity of the building. In addition, these parameters should generally be estimated by using a multi-
zone model such as inter-zone flow rates. In this regard, a state space equation model, referred to as
a “thermal network model,” has been devised to generalize such multi-zone heat transfer system and
tracer gas diffusion system measurements. This model is composed of three parameter types, and we
have developed a system parameter identification theory and uncertainty analysis method using least
squares, as well as actual measurement systems. In the present paper, we improve the least-squares
regression equation, the uncertainty analysis method, and the reliability evaluation method. We inves-
tigate appropriate excitation waveforms and frequencies for heating and tracer gas release, as well as
a low-pass filter for pre-processing measurement data. We verify these theories and methods using
computer-simulated measurement.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Parameters related to the energy efficiency of heating and
cooling, as well as to the thermal comfort of the building envi-
ronment, include the coefficient of external wall heat transmission,
solar heat gain, and effective thermal capacity. In addition,
parameters such as infiltration rate and effectivemixing volume are
related to healthy indoor air quality. In this regard, it is necessary to
develop methods for on-site measurements of these system
parameters, because buildings might not have been built in accor-
dance with plans and from specified materials, components might
have deformed, or material performance may have deteriorated.

In contrast to measurements performed on test buildings con-
structed in laboratories in an artificial climate, it is difficult to
establish these system parameters through on-site measurements
on actual buildings, because outdoor fluctuations in temperature
and solar radiation and the influence of the tested building’s
thermal capacity make conditions unstable. Furthermore, it may be

necessary to apply a multi-zone model to estimate inter-zone flow
rates and heat transmission coefficients.

In Japan, research into on-site measurement methods for
assessing building performance began in the late 1970s with Mat-
suo et al. [1], who devised amethod calledMatsuo’s digital filtering.
Emura et al. improved upon Matsuo’s method by using condensed
orthogonal meteorological effects [2], and further developed an
alternative estimationmethod for states and parameters [3]. Akashi
et al. performed research on least-squares-based system identifi-
cation methods for the static and dynamic thermal characteristics
of office buildings, utilizing a transfer function model [4]. Hattori
et al. [5] continue to research Matsuo’s method. A recent version of
Matsuo’s method estimates the heat loss coefficient of a single-
zone model by using step excitation from an electric heater. In
the estimation process, time series response factors are calculated
by the least-squares method. Most models are single-zone and
require assumptions of invariability and linearity. These methods
are insufficient for discerning simultaneous system identification of
both thermal and infiltration systems. Excitations for this system
identification are mainly researched using square wave or step
functions with high-frequency sinusoidal components as the
Fourier series expansion. Furthermore, these methods have
unsolved problems related to estimating the parameters of solar
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heat gain and effective thermal capacity, as well as with evaluating
the statistical uncertainty of these estimated parameters.

The state of the art is similar in other countries, where copious
research has been performed mainly on single-zone models using
various estimation methods, such as the recursive least-squares
method developed by Zaheer-uddin [6], the iterative descent
technique by Dewson et al. [7] (which involves an evaluation
function of the rootmean square of the predicted and themeasured
temperature), the autoregressive moving average method by Nor-
len [8], and the multi-variable time series least-squares method by
Crawford et al. [9]. Baudier et al. [10] adopted a state space equation
model and applied Marquardt’s algorithm [11] to obtain parame-
ters. Wang et al. [12] studied the application of genetic algorithms
[13] to a simple thermal network. Another example is the two-node
model developed by Jimenez et al. [14,15], which utilizes the
MATLAB software package.

Okuyama [16] gives another possibility, a method with fewer
measurement points than nodes in the system identification
model. That method, however, requires measurement results for
multiplex frequency sinusoidal excitation and accurate higher-
order time derivatives, and furthermore has problems related to
theoretical generalization.

Because of the complexity of heat transfer in buildings, simu-
lation of changes in room temperature are assumed to require
complex models consisting of many nodes, including the building
structure, with varying solar heat gain coefficients. We note,
however, that the parameters to be estimated are for simplified
steady-state models, meaning that time-averaged parameters are
sufficient for certain terms.

In contrast toheat transfer systems, system identificationmodels
for a tracer gas diffusion system used in multi-zone infiltration
measurements can trace concentration changes accurately, even
under a single-node model for each zone, by using mixing fans in
each zone. System identification then becomes relativelyeasier than
in the case of a thermal system. Extensive research onmeasurement
methods for multi-zone airflow rates has been carried out; for
example, 47 papers were cited by Miller et al. in the Introduction
section of their paper [17]. Among these, Sherman, Prior, and O’Neill
are frequently cited. Papers written by Japanese researchers,
including Enai, Honma, and Okuyama, have also been introduced.

Such multi-zone heat transfer and infiltration systems, charac-
terized by heat and tracer gas diffusion systems, respectively, can
be represented by a general mathematical model (a thermal
network model), even though the diffusion variables are different.
It is well known that the various dynamic systems are described by
the state space equation model in modern control theory. Jiang [18]
and Hong [19] researched the formulation of and analytical solution
for an application to building air-conditioning. However, the
analytical solution can be improved by using the spectral resolution
of a projection on eigenspaces [20], and the universally applicable
modeling concept [21] devised by Okuyama.

Okuyama [22] derived two types of least-squares methods for
batch identification and recursive identification of the thermal
network state space equation model, the latter using the matrix
inversion lemma introduced by Woodbury [23]. That study also
developed the system identification program SPID. There, the
recursive least-squares methods seemed to have the ability to
follow parameter time variations, but performance did not live up
to expectations. It was also realized that estimation accuracy was
not higher than that for batch identification. A moving batch
identification term that shifts the several-hour system identifica-
tion term T by Dtwas therefore investigated, and themethod tested
on actual buildings. Changes in infiltration rate in relation to the
changes in indoor/outdoor temperature differences have been
appropriately estimated and verified [24].

In recent years, Okuyama et al. developed a statistical data
analysis method for steady-state multi-zone infiltration measure-
ments using multiple perfluorocarbon tracers [25]. They intro-
duced a discrepancy ratio b, which evaluates prerequisite validity
for measurements and data analysis, and is also useful in heat
transfer systems.

Our latest study [26], despite concerning a single-zone model
with tracer gas pseudo-non-uniformity, revealed that low-frequency
sinusoidal excitation enables satisfactory results, even in a rough
system identification model of fewer nodes. We also found that
a low-pass filter using moving term averages is necessary for pre-
processing measurement data. We solved the problem of deter-
mining the optimum concentration decay term or, more generally,
the optimum excitation stopping term. We furthermore found an
appropriate calculation method for the uncertainty propagation
equation, and the usefulness of both the coefficient of determination
(COD) and the discrepancy ratio b for reliability evaluation.

The present paper improves the earlier theory [22], and confirms
the aforementioned findings for the multi-zone system through use
of a single-zone model [26]. Appropriate verification is impossible
in case studies of actual buildings because the true system param-
eters are unknown. The first step in this study, therefore, is
computer-simulated measurements, for which true or comparable
reference values are known. When measuring the thermal perfor-
mance of buildings, mechanical ventilation is usually stopped and
heat loss by infiltration is included in the heat transmission of
external walls. For the computer-simulated measurements in this
research, the programNETS2 [27] was used for combined simulation
of heat, air, and tracer gas transfer. Simulatedmulti-zone infiltration
measurements were also performed for reference.

2. System parameter estimation by double application of
least-squares

2.1. Primary regression equation for diffusion system parameters

The framework of the spatial discretization model of a diffusion
system can be written in the form of Equation (1), which is referred
to as the nodal equation of a completely linked system. From this,
the simultaneous ordinary differential Equation (2), also known as
the state space equation, is constructed. Here, xj,mi,j, ci,j, and ri,j are,
respectively, diffusion variables such as the temperature of node j,
the generalized capacitance of node i, the generalized conductance
from node j toward node i, and the flux coefficient from the flux
source j towards node i. Note that the flow direction is opposite the
order of the subscripts i and j, in accordance with the linear algebra
rule indicating element position in the matrix. In addition, n is the
number of nodes with unknown values, no is the number of nodes
with given values, and ng is the number of flux sources. Equation
(2) is the entire equation for all nodes.

Generalized conductance ci,j such as infiltration or heat transfer
by long wave radiation varies with temperature and time. Never-
theless the present methods are useful in cases where average
results of the system identification term are sufficient. A linearizing
approximation for long wave radiation is described in Appendix A.

Xn
j¼1

mi;j$ _xj ¼
Xnþno

j¼1

ci;j$
�
xj � xi

�þXng
j¼1

ri;j$gj (1)

2 NETS is authorized by the Ministry of Land, Infrastructure and Transport, Japan,
as a calculation method for building annual heating and cooling load, as of 22
October 2002.
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M$ _x ¼ C$x þ Co$xo þ R$g (2)

Following the method described in [22], we transform Equation
(2) into Equation (3), which will be the primary regression equation
for system parameters. If we assume that there is at least one
known parameter for a node, the product of that parameter with
the variable xj or gj is transposed into y on the left. Next, the vectors
incorporating the unknown parameters mi,j, ci,j, and ri,j are denoted
withm, c, and r, and their corresponding matrices are defined as D,
X, and G. Combining the above, thematrix Z (n� na) is formed from
the measurement values, and the vector a (na) incorporates the
system parameters.

y ¼ D
�
_xi
�
$mþ XðxiÞ$cþ GðgiÞ$r ¼ ½D X G �$

2
4mc

r

3
5 ¼ Z$a

(3)

The interval between measurements is Dt, the total number of
measurement intervals is nt, and themeasurement term is T. Below,
yk and Zk are defined from the linear interpolation integral from (k-
1)Dt to kDt.

yk ¼
ZkDt

ðk�1ÞDt
ydt (4)

Zk ¼
ZkDt

ðk�1ÞDt
Zdt (5)

The next Equation (6) is defined as the primary regression
equation for the system parameters between measurement inter-
vals (k-1)Dt and kDt.

yk ¼ Zk$a (6)

2.2. Two quadratic form equations for regression

In the early method for system identification [22], linear depen-
dencies between the systemparameterswere prepared using the air
flow rate balance and/or the symmetry of thermal conduction, and
some system parameters were represented by others. These equa-
tions were embedded in the primary regression equation, reducing
the number of parameters before performing the least-squares
formulation. The algorithm for preparing dependent equations for
system parameters was rather complex, however. In addition, when
applying the non-negative least-squares method [28], the parame-
ters hidden by these dependencies were not subject to the non-
negative constraint. These inconveniences are resolved by adding
the dependency constraint equations in order of the rows of the
simultaneous regression equations of the least-squares method.

The formulation of the least-squares method in this paper
differs from the commonly accepted one. The regression equations
obtained from the measurement values are normally added in
rows. This paper is the first to define the equation error of the
primary regression Equation (6) through the following equation,
where the error vector nek is of dimension n.

nek ¼ yk � Zk$a (7)

The sum of the products of this transposed error vector and the
error vector for the measurement term is defined as the evaluation
function for the least squares. Note that the t on the left shoulder of
vector e represents the transposition of a matrix or vector.

Jn ¼
Xnt
k¼1

t
nek$nek ¼

Xnt
k¼1

tðyk � Zk$aÞ$ðyk � Zk$aÞ (8)

This evaluation function is differentiated by vector a, composed
of the system identification parameters, and the result is set equal
to 0. Rearranging with respect to a, we obtain the following equa-
tion. Although it seems that this equation can be solved for a, in fact
an appropriate solution cannot be obtained because constraint
conditions such as the air flow balance are not considered. Equation
(9) is called the quadratic form primary equation.

vJn
va

¼ �
Xnt
k¼1

tZk$yk þ
Xnt
k¼1

tZk$Zk$a ¼ 0 (9)

In the composite regression equation, defined later, the
quadratic form primary equation produces an equation error ea
(na), as follows.

ea ¼
Xnt
k¼1

tZk$yk �
Xnt
k¼1

tZk$Zk$a (10)

The air flow rate balance, the mass flow rate balance, the
symmetry of thermal conductance, and a number of system
parameters linearly dependent on a few physical characteristics,
such as thermal conductivity, are included in the constraint equa-
tions. These equations, with a total number of ns, are referred to as
first-degree constraint equations. When several system parameters
are known, they can be included into the first-degree constraint
equations, which can be expressed as in the following equation by
using a matrix S (ns � na) and a vector d (ns). Here, the elements of
S and d can be 1, e1, or 0, depending on the conditions of the air
flow balance and the symmetry of the generalized conductance.
When system parameter values are given, however, they are
included in d, and S is composed only of 1s and 0s. We consider the
first-degree constraint Equation (11) as satisfying the meaning of
least squares, whichminimizes the evaluation function Jd expressed
by Equation (12), where the right side of Equation (11) is integrated
along Dt, corresponding to the primary regression Equation (6).

ed ¼ Dt$ðd� S$aÞ (11)

Jd ¼ ted$ed ¼ Dt2$tðd� S$aÞ$ðd� S$aÞ (12)

The minimizing equation for (12) is obtained by differentiation
of Jd by a. This solution will have an equation error es (ns) in the
composite regression equation, and this quadratic form constraint
equation is written as follows.

es ¼ Dt2$tS$d� Dt2$tS$S$a (13)

2.3. Weighting matrices

The presence of large variation in the magnitude of matrix
elements between the quadratic form primary equation and the
quadratic form constraint equation, and between each row, exerts
a negative influence on the estimation accuracy of the least squares.
The weighting matrices Wa and Ws are therefore introduced to
ensure an unbiased estimate.

For each row in the matrix Ha ¼ S tZk･Zk (na � na), which is
multiplied by a in Equation (10), the maximal absolute value of the
i-th row is taken, and its squared inverse value is substituted into
the i-th diagonal position inWa. Here, if all elements of a row in Ha
are 0, then 1 is substituted. The square corresponds to the square of
te･e. As a result, the dimension of Wa is (na � na).

H. Okuyama, Y. Onishi / Building and Environment 54 (2012) 39e52 41
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In multi-zone air flow measurements, if the tracer gas concen-
tration of the outdoor air is 0, and if the air flow rate coming from
outdoors to a certain indoor zone is the j-th element in the vector a,
then all elements of the j-th row in Ha will be 0.

For the matrix HS ¼ Dt2･tS･S, (na � na) in Equation (13), the
maximal absolute value of each row in the matrix HS (na � na) is
taken, and its squared inverse value is substituted into the diagonal
position in WS (na � na). Here, if all elements of a row in HS are
0 then 1 is substituted.

2.4. Solution by double application of least-squares

The following equation defines the error vector e (2na) of the
composite regression equation by coupling the error vectors of the
quadratic form constraint equation in Equation (13) with the
quadratic form primary equation in Equation (10) in the direction of
increasing rows.

e ¼
�
ea
eS

�
¼

2
64 P

nt

k¼1

tZk$yk

Dt2$tS$d

3
75�

2
64 P

nt

k¼1

tZk$Zk

Dt2$tS$S

3
75$a (16)

The matrix F (2na � na) and the vector b (2na) of the composite
constraint equation are defined as follows.

F ¼

2
64 P

nt

k¼1

tZk$Zk

Dt2$tS$S

3
75 (17)

b ¼

2
64 P

nt

k¼1

tZk$yk

Dt2$tS$d

3
75 (18)

From these definitions, Equation (16) can be rewritten as
follows.

e ¼
�
ea
eS

�
¼ b� F$a (19)

The product of the transposed error vector and the error vector
of the composite regression equation is defined as an evaluation
function for the least squares. Weighting matrices Wa and Ws will
be combined into W, as in the following equation.

J ¼ te$
�
Wa 0
0 WS

�
$e¼ te$W$e¼ tðb�F$aÞ$W$ðb�F$aÞ (20)

Differentiating by the vector a, we obtain the following
equation.

vJ
va

¼ 2$tF$W$F$a� 2$tF$W$b ¼ 0 (21)

In this way, estimation of the vector a is obtained through
double application of the least-squares method.

â ¼ ðtF$W$FÞ�1$ðtF$W$bÞ (22)

3. Uncertainty analysis and reliability evaluation methods

3.1. Variance-covariance matrix of estimated system parameters

Differences between the premises of the system identification
model and the actual phenomena, combined with the uncertainty
of measurement values, can result in negative parameters. We
therefore recommend application of the non-negative least-
squares method [28] to Equation (19). The following equation
calculates the variance-covariance matrix of the uncertainty of the
parameters. The dimension of this matrix is La (na � na), and
Appendix B describes its derivation.

La ¼ ðtF$W$FÞ�1$ðtF$W$Eðe$teÞ$W$FÞ$t
n
ðtF$W$FÞ�1

o
(23)

The expected error matrix of the composite regression equation
E(e･te) (2na� 2na) is written as follows, since the covariance of the
errors for the upper half (the quadratic form primary equation) and
the lower half (the quadratic form constraint equation) can be
regarded as 0.

Eðe$teÞ ¼ E

 "
ea

eS

#
$t

"
ea

eS

#!

¼
"
Eðea$teaÞ 0

0 EðeS$teSÞ

# (24)

There are two ways of defining the expected equation error
matrices for the quadratic form primary and constraint equations;
based on the equation residual, or based on measurement uncer-
tainty. These methods are described in Sections 3.2 and 3.3. Below,
we use r (residual) and m (measurement) as subscripts for the
stochastic expectation operator E.

Wa ¼

2
6664
absmaxð1st row in HaÞ�2 0 / 0

0 abs maxð2nd row in HaÞ�2 «
« 1 0
0 / 0 abs maxðna� th row in HaÞ�2

3
7775 (14)

WS ¼

2
6664
abs maxð1st row in HSÞ�2 0 / 0

0 abs maxð2nd row in HSÞ�2 «
« 1 0
0 / 0 absmaxðna� th row in HSÞ�2

3
7775 (15)
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3.2. Propagation from equation residual and coefficient of
determination

We now consider calculation of the expected error matrix for
the composite regression equation of Equation (24) from the
residuals. The origin of the residual is not only uncertainty of
measurement, but also differences in the premises and the struc-
ture of the system identification model as compared to the actual
phenomena. The residual vector vk (n) of the primary regression
equation is calculated as follows.

vk ¼ yk � Zk$â (25)

First, the expected matrix E(vk･tvk) (n� n) of the residual for the
primary regression equation is calculated from Equation (26). Here,
the covariance of off-diagonal elements of Svk･tvk is regarded as 0;
therefore the diag operation, which extracts only the elements on
thediagonal, is used. Diagonalization also avoids asymmetries in the
calculated matrix due to numerical computation errors in Equation
(27).

Eðvk$tvkÞ ¼ diag

 
1

ðnt � naÞ
Xnt
k¼1

vk$
tvk

!
(26)

Using Equation (26) allows calculation of the expected error
matrix Er(ea･tea) (na � na) for the quadratic form primary equation
from the following Equation (27), which is derived in Appendix C.

Erðea$teaÞ ¼
Xnt
k¼1

tZk$Eðvk$tvkÞ$Zk (27)

The sum of residual squares of s(a), which is necessary for
calculating the coefficient of determination (COD), is now obtained
from the following equation.

sðâÞ ¼
Xnt
k¼1

tvk$vk ¼
Xnt
k¼1

tðyk � Zk$âÞ$ðyk � Zk$âÞ (28)

Also, the total variation sy is calculated as follows. Where the top
bar of yk means average.

sy ¼
Xnt
k¼1

tðyk � ykÞ$ðyk � ykÞ

¼
Xnt
k¼1

tyk$yk �
1
nt
$

 Xnt
k¼1

tyk

!
$

 Xnt
k¼1

yk

!
(29)

COD is therefore calculated from s(a) and sy by the following
equation.

COD ¼ 1� sðâÞ
sy

(30)

The expected error matrix Er(es･tes) (na � na) for the quadratic
form constraint equation is also calculated using the residual.

Erðes$tesÞ ¼ Dt4$ðtS$d� tS$S$âÞ$tðtS$d� tS$S$âÞ (31)

The expected error matrix of the composite regression equation
Er(e･te) (2na � 2na) due to residuals is calculated from Equations
(27) and (31), as follows.

Erðe$teÞ ¼
�
Erðea$teaÞ 0

0 Erðes$tesÞ
�

(32)

Next, the propagation of uncertainty towards the identification
parameter from the residual of the composite regression equation
is calculated.

rLa ¼ ðtF$W$FÞ�1$ðtF$W$Erðe$teÞ$W$FÞ$t
n
ðtF$W$FÞ�1

o
(33)

Concerning Equation (33), the expected error matrix (32) must
be calculated using residuals caused by the original measurement
data, not by the moving average data.

3.3. Propagation from measurement uncertainty

Here, we discuss the uncertainty variance of identified system
parameters resulting from uncertainty of measurement with
respect to temperature, solar radiation, tracer gas release rate, and
gas concentration. We assume that the measurement uncertainty
of xi and gi have respective instantaneous variances of s2x and s2g .
The uncertainty variance bs

2
x of the incremental calculation results

is obtained from the difference of the measurement values at the
two ends of the interval Dt, and is calculated from Equation (34)
based on the propagation of the uncertainty variance. Further-
more, xi and gi are integrated along the time interval Dt and the
integration is subjected to trapezoidal approximation, so Equations
(35) and (36) give the respective uncertainty variances ss

2
x and ss

2
g .

bs
2
xi ¼ 2$s2xi (34)

ss
2
xi ¼ ð1=2Þ$Dt2$s2xi (35)

ss
2
gi ¼ ð1=2Þ$Dt2$s2gi (36)

Here, the vector corresponding to the measurement data and
the standard deviation vector of the measurement uncertainty are
defined as follows.

bxk ¼ t�
bx1;k;/; bxn;k

�
(37)

bsx ¼ tðbsx1;/; bsxnÞ (38)

sxk ¼ t�
sx1;k;/; sxn;k;/; sxnþno;k

�
(39)

ssx ¼ tðssx1;/; ssxn;/; ssxnþnoÞ (40)

sgk ¼ t
�
sg1;k;/; sgng;k

�
(41)

ssg ¼ t�
ssg1;/; ssg ng

�
(42)

Furthermore, bxk, sxk, and sgk are considered true values with
added respective uncertainties bsxk, ssxk, and ssgk. If we assume that
the estimated uncertainty of system parameters is due to only the
uncertainty of measurements of xj and gj, then the state space
equation error for the true values xj and gj can be regarded as 0.

nεk ¼ �M$bxk þ ½C Co �$sxk þ R$sgk
¼ �M$bsxk þ ½C Co �$ssxk þ R$ssgk (43)

Furthermore, if we assume that the state space equation error
originates only from the uncertainty of measurement of xj and gj,
then the expected matrix error Eðnεk$tnεkÞ$ðn� nÞ of the equation
errors nεk at time step k is calculated as follows.

Eðnεk$tnεkÞ ¼ diag
�
M$Eðbsxk$tbsxkÞ$tMþ ½C Co �$Eðssxk$tssxkÞ$t ½C Co � þ R$E

�
ssgk$

t
ssgk

�
$tR
�

¼ diag
�
M$diagðbsx$

t
bsxÞ$tMþ ½C Co �$diagðssx$

t
ssxÞ$t ½C Co � þ R$diag

�
ssg$

t
ssg

�
$tR
�

(44)
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Here, we use the assumption that the expected value of the
covariance of the uncertainties bsxk, ssxk，and ssgk is 0, and that the
expected value of the covariance of the elements of these three
vectors is also 0. Thus the expected error matrix (na � na) of the
quadratic form primary equation is calculated as follows.

Emðea$teaÞ ¼
Xnt
k¼1

tZk$Eðnεk$tnεkÞ$Zk (45)

Regarding the expected error matrix (na � na) for the quadratic
formconstraint equation, ifmeasurementuncertainty is takenas the
sole origin of equation error, the expected error of themeasurement
uncertainty is 0, and the following equation holds true.

Emðes$tesÞ ¼ 0 (46)

From this, the expected error matrix e･･te (2na � 2na) for the
composite regression equation is calculated as follows.

Emðe$teÞ ¼
�
Emðea$teaÞ 0

0 0

�
(47)

By using Equation (47) instead of Equation (32), we can use
Equation (48) to calculate the variance-covariance matrix mLa
(na � na) of the estimated parameters arising only from
measurement uncertainty.

mLa ¼ ðtF$W$FÞ�1$ðtF$W$Emðe$teÞ$W$FÞ$t
n
ðtF$W$FÞ�1

o
(48)

3.4. Discrepancy ratio for system identification model premises

Failure to meet the premises of the system identification model
in the actual phenomena is a more significant cause of identifica-
tion uncertainty than is measurement uncertainty. To address this,
the uncertainty variance of estimated system parameters arising
from the equation residual described in the preceding section can
be utilized. If variance arising from the residual is larger than that
from measurement uncertainty, the premises of the system iden-
tification model structure, and its invariability, uniformity, or
linearity, may be insufficiently established.

We therefore introduce an index to evaluate these discrep-
ancies. Here, the j-th element of the diagonal in mLa is denoted as

ms
2
lj
, and that of rLa as rs

2
lj
. Next, using the square roots of these

elements, we define the ratio b by the following equation, which is
referred to as the discrepancy ratio of the model premises.

bj ¼
rslj

mslj
(49)

The averaged value of bj for all diagonal elements can be used as
an evaluating index. When the discrepancy ratio is considerably
larger than 1, there might be insufficient establishment of
measurement premises for an appropriate system identification
model. In this case we should also consider the coefficient of
determination. If neither index is satisfactory, we should reconsider
the system identification model, the moving average term of the
measurement data, and the measurement procedure, including the
magnitude and frequency of the excitation wave.

4. Optimum excitation and low-pass filter and measurement
time intervals

The majority of system identification error is caused by
approximation of the spatial discretization of that model. We can
reduce this error by using a longer period Tp of sinusoidal excitation

[26] and an appropriate term Ta of the moving average. However, in
the case of multi-zone infiltration measurement, the discrepancy
between the actual phenomenon and the model lessens if we use
mixing fans.

In practice, simultaneous tracer gas release in, or electric heating
of, all rooms is difficult. Additionally, producing greater temperature
or concentration differences is preferable between adjacent rooms,
and the gas release or heating should be intermittent in all rooms.
Sinusoidal excitations are applied from trough-to-trough with
period Tp andwith a smooth pattern to produce less high-frequency
noise.

The stopping term, Ts, of gas release in multi-zone infiltration
measurement can be broadly set to be between one-half and twice
the optimum decay term [26].

The maximum rate of electric heating or gas release should be
determined so as not to cause excessively high room temperatures
or gas concentrations outside of the measurement range. Solar
radiation acts as an excitation, not as noise, and so the maximum
electric heating rate should be close to that of the solar radiation. In
an actual measurement system, these values are controlled by state
feedback.

In the case that the measurement interval is 1 min, by using the
moving average term Ta as a low-pass filter, about 10e60 min is
considered an adequate duration to reduce the effects of measure-
ment uncertainty resulting in high-frequency noise. However,
several hours or more are required to transform the measurement
data into a form that is suitable for the rough system identification
model of the heat transfer system. Lacking prior experience, we can
search for an optimum Ta that gives a relatively large effective
capacitymi,i and the coefficient of determination COD by numerical
experimentation, because the mi,i of a rougher model should have
a larger value to represent spatially wider material.

The present method of system identification requires the time
integration of state variables along Dt, and these are approximated
by linear interpolation. A shorter Dt is therefore preferable to
improve the approximation. Moreover, in order to improve the
accuracy of the moving term average, we should obtain as many
measurements as possible within Ta by using shorter Dt. Therefore,
the measurement interval Dt should be shorter than 10 min and
1 min is likely sufficient.

5. Verification case study

5.1. Models for simulated measurements

We assumed a two-story, two-zone building, 10 m wide in the
east-west direction, 10 m wide in the south-north direction, and
6 m tall. The total floor area is 200 m2. We conducted simulation
measurements for multi-zone air flow rates and thermal perfor-
mance. Building thermal and air flow rate network models are
superimposed on the building section in Fig. 1. The south direction
is leftward and the depth direction is east to west. The east and
west sides have walls and windows, and the model is three-
dimensional. The transmitting heat flow paths through east (E)
and west (W) walls and windows are superimposed on this section.
Concerning the thermal network model, Table 1 shows the thermal
properties of the walls and windows. Changes in outdoor temper-
ature, solar radiation, and electric heater output drive the thermal
model. We also constructed a massive building model, supposing
a reinforced concrete building with wall node thermal capacitances
multiplied by 2.5, but same thermal conductance as the wooden
building.

Only infiltration is considered in the airflow rate networkmodel,
with the 400 cm2 total equivalent gap area equally distributed to the
flowpaths over externalwalls, and a leakage exponent of 1.5. During

H. Okuyama, Y. Onishi / Building and Environment 54 (2012) 39e5244



Author's personal copy

simulated measurement, mechanical ventilation is stopped and
influenced only by temperature differences and wind. Wind pres-
sure coefficients are same as in the former study [25].

We used the computational simulation program NETS to obtain
simulated measurement results, under standard meteorological
data conditions for Tokyo with various electric heating and tracer
gas release waveforms. According to our research at least one wave
peak is needed for system identification. We also tested sinusoidal
heating waves with a 72 h period, and therefore simulated 6 days of
measurement data after a 3 day run starting on January 1. Fig. 2
shows changes in outdoor temperature and solar radiation for the
6 days, and Fig. 3 shows wind direction and velocity.

As described in Section 4, electric heater capacities were set at
8 kW for 6e24 h periods and 4 kw for 48e72 h periods. Tracer gas
release capacities were set to 1 mg/s according to the assumed air
exchange rate and the concentration measurement range for SF6.
Both of these were delivered as sinusoidal waves.

Time integration intervals for the heat transfer and tracer gas
diffusion system were 30 s, and the measurement data are per-

minute results. We additionally added random error to the simu-
lated measurement data, assuming measurement uncertainty
standard deviations ms as 0.2 �C for temperature, 4 W for the
electric heater, 0.2 mg/m3 for gas concentration, and 0.012 mg/s for
gas release. Outdoor gas concentration was regarded as 0.

5.2. System identification model

Fig. 4 shows the system identification models for the heat
transfer and tracer gas diffusion systems. For the gas diffusion
system, we use a two-node model similar to the simulation
measurement model. Here, the entire air flow rates ci,j are regarded
asasymmetric, and theeffectivemixingvolumemi,i is also identified.
Known parameters are the gas release conversion coefficients ri,j of
3600.

Taking idealized measurements inside walls and surfaces is
difficult when measuring temperature in actual buildings, so only
room air-temperature measurements are assumed. The system
identification model of heat transfer was therefore also taken as

Fig. 1. Measurement simulation models.

Table 1
Thermal properties of building materials.
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a two-node model, in which the thermal conductance ci,j, the
effective thermal capacitymi,i, and the solar heat gain coefficient ri,j
are identified. The solar heat gain coefficient is r1,3 (m2) for the first
floor and r2,3 (m2) for the second floor, and the horizontal total solar
radiation is defined as g3 (W/m2). Known parameters are the
electricity to heat conversion coefficient ri,j.

Since the generalized conductance ci,j of infiltration-induced
convection is asymmetric, ci,j should also ideally be identified as
asymmetric in the heat transfer system. If we assume that the
convection portion can be obtained from the infiltration measure-
ment, it should be possible to calculate the heat transmission
portion by subtraction. Actual attempts to do so, however, resulted
in unreasonable results due to various errors, and thus we applied
symmetry constraints to the thermal conductance ci,j. The sampling

time interval for system identification was set to 1 min for both the
heat transfer and gas diffusion systems.

5.3. True values or references of system identification

Although somemeasurement parameters such as air infiltration
rate fluctuate to a certain extent, these values are estimated by the
system identification as averages over the measurement term.
These averages are thus regarded as references for comparison. For
example, the changes in infiltration and air exchange rate in Fig. 5
show approximately �60% fluctuations around the term averages.

The estimated generalized thermal conductance ci,j of the
system identification can be considered as the sum of two types of
ci,j, wall heat transmission and convection due to infiltration
through the wall. Such overall thermal conductance ci,j explains the
change in Fig. 6. The convection portion is rather small compared to
transmission, and thus the overall change in conductance is also
small. NETS has a heating and cooling load calculation function. By
utilizing this function only to the thermal model and excluding the
air infiltration model, all room temperatures are maintained at 1 �C
with the outdoor 0 �C condition, so the thermal load through the
exterior wall can be computed in steady state and consequently the
conductances are calculated. Inter-zone wall transmission
conductance can be computed by maintaining 1 �C for the opposite
room and 0 �C for the other all rooms including 0 �C for the outdoor
condition. The convection portion is computed from the infiltration

Fig. 2. Outdoor temperature and solar radiation.

Fig. 3. Wind velocity and direction.

Fig. 4. System identification models.

Fig. 5. Air exchange rate and infiltration rates in a wooden building.
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rate average for the measurement term. These convection and
transmission portions are summed as the overall conductance. The
heat loss coefficient Q, often used in Japan, is calculated as the
heating load necessary tomaintain an indoor temperature of 1 �C at
a constant outdoor temperature of 0 �C and dividing it by the total
floor area. The heating load includes the actual air infiltration load.

The solar heat gain coefficient ri,j represents the conversion
factor from the horizontal total solar radiation to the heating
energy for the air in each room, but the actual coefficient varies,
making it difficult to determine its reference value. Using NETS,
maintaining both the indoor and outdoor temperatures at 0 �C
during the measurement term, we can compute the unsteady-state
cooling load caused only by solar radiation. Taking the solar heat
load averaged over the measurement term as the numerator and
the averaged total horizontal solar radiation as the denominator,
the ratio sgj is considered as a reference for comparison.

Since it is assumed that mixing fans are used during measure-
ment, the zone’s geometrical volume can be regarded as a reference
for the effective mixing volume mi,i of the gas diffusion system.
However, it is difficult to determine a reference for the effective
thermal capacity mi,i for the heat transfer system’s zone nodes. We
can consider that a certain portion of the thermal capacity of the
walls is included in this effective thermal capacity mi,i. For
a massive building, the estimated value should be larger than that
for a wooden building.

5.4. Verification of system identification for multi-zone air flow rate
measurements

The structural discrepancy between the model and the actual
phenomenon is small in this measurement. The major causes of
system identification error are changes in infiltration over time and

measurement uncertainty. We tried four sinusoidal periods
Tp ¼ 0.5,1.5, 3, and 6 (h) for the gas release and five moving average
terms Ta ¼ 10, 30, 60, 90, and 120 (min) under conditions of added
measurement uncertainty. Thus 4 � 5 ¼ 20 test calculations were
performed. The gas release stopping term Ts was set at 6 h by
a recent study [26]. The electric heating sinusoidal period was 72 h.
We obtained optimum results of COD ¼ 0.952 and b ¼ 1.21 with
Tp ¼ 1.5 h and Ta ¼ 60 min, so these conditions were used in the
present case.

Table 2 shows system identification results for multi-zone air
flow rate measurements. The system identification carries two
conditions, that ms ¼ 0 with no measurement uncertainty, and

mss0 for non-zero measurement uncertainty.
The identified air flow rates ci,j are satisfactory in comparison

with the term-averaged ci,j, and the results for the effective mixing
volume mi,i are also satisfactory. Because the infiltration rates ci,j
show some fluctuation in the measurement term, the discrepancy
ratio b of the measurement premises are greater than 1 (about
1.21). As for the estimated standard deviations, rsl of the identified
parameters are appropriate in comparison with the actual devia-
tions from the term-averaged parameters. Figs. 7 and 8 show the
first and second floor, respectively, and each shows a graph
comparing the concentration simulated by a model consisting of
the identified system parameters with the concentration according
to measurement. The variation in infiltration and air exchange rates
over time is large, so the identified model with term-averaged
parameters shows large discrepancies for some terms.

5.5. Verification of system identification in a heat transfer system

Most heat transfer system identification models have structural
discrepancies in comparison with the actual phenomena, and it is

Fig. 6. Overall heat transfer generalized conductance ci,j in a wooden building.

Table 2
System identification results for multi-zone infiltration rates measurement.

Tracer gas diffusion
system parameter

Term ave. System
identification
result

COD Standard
deviationrsl from
the equation
residual

Standard deviation msl

from the measurement
uncertainty

Discrepancy ratio
b of model
premises

ms ¼ 0 mss0 ms ¼ 0 mss0 ms ¼ 0 mss0 mss0 mss0

c 3,2 57.41 53.29 55.31 0.9641 0.9522 4.414 14.72 10.95 1.344
c 3,1 1.323 0.000 0.000 7.919 26.44 19.81 1.335
c 2,3 2.094 1.920 3.100 3.860 10.59 8.870 1.194
c 1,3 56.56 51.37 52.21 2.513 8.161 7.063 1.155
c 2,1 55.58 53.00 52.63 6.891 19.64 16.00 1.228
c 1,2 0.000 1.630 0.420 2.396 8.645 6.647 1.301
m 2,2 300.0 291.9 285.2 9.591 23.37 21.27 1.099
m 1,1 250.0 245.4 241.3 5.396 16.02 15.16 1.056
Air exchange rate(1/hour) 0.107 0.100 0.100 e e e e

Average value e e e e e e e e 1.214

Note: c i,j： air flow rate(m3/h) from zone j to zone i. Here, zone 3 corresponds to the outdoor, mi,i：effective mixing volume of the i-th zone (m3), ms：measurment
uncertainty standard deviation.

Fig. 7. Tracer gas release and concentration change for first floor in a wooden building.
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usually difficult to obtain satisfactory identification. We therefore
tested various periods of sinusoidal heating with electric heaters
and moving average terms to eliminate the negative effect of these
discrepancies.

To clarify the effect of these periods we adopted a condition of
no measurement uncertainty. We tried sinusoidal excitation

periods of Tp ¼ 6, 12, 24, 48, and 72 h, and for the moving average
terms of Ta ¼ 1, 3, 6, 8, 12, 18, and 24 h. We carried out numerical
experiments for these 5� 7¼ 35 cases in the wooden building, and
compared the resulting coefficients of determination COD and
effective heat capacities mi,i. However some unreasonable results
were observed in 5 cases with Ta ¼ 24, in addition to the 3 cases
with (Tp ¼ 6, Ta ¼ 12), (Tp ¼ 6, Ta ¼ 18) and (Tp ¼ 12, Ta ¼ 18). We
observed a general tendency of increasing CODwith increases in Tp
and Ta. For each Tp greater than 12 h, a relatively largemi,i occurred
at Ta ¼ 8 h. The conditions Tp ¼ 72 h and Ta ¼ 8 h gave the optimum
results with COD ¼ 0.9940, and these conditions were thus used in
the present case.

We next carried out verification experiments for measurement
uncertainty. Tables 3 and 4 show the system identification results
for the wooden and massive building, respectively. Because of
structural discrepancies of the system identification model, the
index b is slightly larger than 1. We observe that the estimated Q
value is slightly smaller than the true value with about 1.3% error
for wooden and 4.5% for massive building. Almost all estimated
parameters ci,j are reasonable.

The identified solar heat gain coefficient ri,j was slightly smaller
than the solar heat load coefficient sgi. Nevertheless, these

Fig. 8. Tracer gas release and concentration change for second floor in a wooden
building.

Table 3
System identification results for thermal performance of a wooden building.

Wooden
building
system
parameter

Term Ave.
(transmission þ convection)

System
identification
result

COD Standard
deviationrsl

from the equation
residual

Standard deviation
msl from the
measurement
uncertainty

Discrepancy ratio
b of model
premises

ms ¼ 0 mss0 ms ¼ 0 mss0 ms ¼ 0 mss0 mss0 mss0

c 3,2 229.5(210.3 þ 19.23) 206.1 205.9 0.9940 0.9934 4.325 37.79 37.92 0.997
c 3,1 207.7(207.3 þ 0.443) 224.6 225.4 3.99 37.41 37.08 1.009
c 2,3 211.0(210.3 þ 0.701) 206.1 205.9 4.325 37.79 37.92 0.997
c 1,3 226.2(207.3 þ 18.94) 224.6 225.4 3.99 37.41 37.08 1.009
c 2,1 193.0(174.4 þ 18.61) 187.4 186.7 3.70 33.05 33.21 0.995
c 1,2 174.4(174.4 þ 0.000) 187.4 186.7 3.70 33.05 33.21 0.995
m 1,1 mt 3307 3319 125.0 1168 1156.9 1.010
m 2,2 3244 3283 135.3 1183 1187.5 0.996
r 1,3 Sg 1 9.871 9.935 0.335 3.135 3.107 1.009
r 2,3 Sg 2 8.954 8.932 0.3729 3.259 3.269 0.997
Total ci,j 437.2 430.7 431.3 e e e e e e

Q value 2.186 2.153 2.156 e e e e e e

Average value e e e e e e e e 1.001

Note: Sg 1：10.40. Sg 2：9.510. mt：Total thermal capacity for all nodes 10080(kJ/K), the identified value c i,j is the sum of the convection and the transmission. c i,j：thermal
conductance (W/K) from j to i. Here, imposing the symmetry constraint c i,j ¼ c j,i. m i,i：thermal capacity of node i (kJ/K), r i,j：solar heat gain coefficient(m2) Sg j：Solar
thermal load coefficient(m2), Total ci,j ： sum of c2,3 and c1,3 (W/K), Q value ： (W/Km2, per floor area 200 m2） ms：measurment uncertainty standard deviation.

Table 4
System identification results for thermal performance of a massive building.

Massive
building
system
parameter

Term Ave.
(transmission þ convection)

System
identification
result

COD Standard deviation
rsl from the
equation residual

Standard deviation
msl from the
measurement
uncertainty

Discrepancy
ratio b of model
premises

ms ¼ 0 mss0 ms ¼ 0 mss0 ms ¼ 0 mss0 mss0 mss0

c 3,2 229.6(210.3 þ 19.31) 199.7 198.1 0.9913 0.9889 17.06 75.26 73.17 1.029
c 3,1 207.8(207.3 þ 0.535) 221.1 219.7 17.43 80.37 78.79 1.020
c 2,3 211.0(210.3 þ 0.718) 199.7 198.1 17.06 75.26 73.17 1.029
c 1,3 226.4(207.3 þ 19.10) 221.1 219.7 17.43 80.37 78.79 1.020
c 2,1 193.1(174.4 þ 18.68) 191.0 191.6 15.53 71.48 69.60 1.027
c 1,2 174.4(174.4 þ 0.000) 191.0 191.6 15.53 71.48 69.60 1.027
m 1,1 mt 7229 7122 1182 5423 5318 1.020
m 2,2 6784 6659 1094 4781 4649 1.028
r 1,3 Sg 1 9.568 9.427 1.600 7.380 7.239 1.020
r 2,3 Sg 2 8.621 8.457 1.571 6.881 6.691 1.028
Total ci,j 437.4 420.8 417.8 e e e e e e

Q value 2.187 2.104 2.089 e e e e e e

Average value e e e e e e e e 1.025

Note: Sg 1：10.40. Sg 2：9.889. mt：Total thermal capacity for all nodes 23016.5(kJ/K). ms：measurment uncertainty standard deviation.
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constants ri,j enable closely tracing measurement room tempera-
ture changes. Furthermore, the total identified effective thermal
capacity mi,i was about half the cumulative thermal capacity for all
nodes. This result is appropriate if we consider that half of the wall
thickness contributes to the air nodes in the room. The reliability
index COD for the wooden building was larger than that for the
massive building. Estimated uncertainty standard deviations of
system parameters are satisfactory in predicting actual deviations
from the true values.

Figs. 9 and 10 show comparisons between simulated room
temperature changes using the identified model and the
measurement temperature changes. Those figures respectively
show first and second floor room temperature changes for the
wooden building. Even though the model was constructed of only
two nodes, the results are almost identical.

The optimum combination of the periods Tp and Ta can be
numerically searched for relatively large COD and effective heat
capacities mi,i. However searches implementing some theoretical
methodology are likely more practical. Longer sinusoidal excitation
periods seem to give better results, though methods that reduce
measurement time are also desirable.

6. Conclusions

A generalized system identification theory applicable to
measurement of building heat transfer and infiltration systems,
uncertainty analysis, and reliability evaluation theories was
deduced and verified through computational case study. The main
findings and results of this study are given below.

(a) Improvements of the estimationmethods for system parameters of
building heat transfer and infiltration systems.

We deduced a composite regression equation comprised of two
types of quadratic form equation. One is a quadratic form primary
equation derived from the state space equation, and the other is
a quadratic form constraint equation. Each was obtained by least

squares. The estimation equation for system parameters was
deduced by least squares for the composite regression equation. The
final estimation equation was thus deduced through a double
applicationof least squares. These formulations realize a consistency
of physical units in the composite equation, and also an extensibility
of the constraints.We introducedaweightingmatrixW for unbiased
estimation, and the estimation accuracy for the system parameters
and the uncertainty evaluation indices were improved.

(b) Uncertainty and reliability analysis methods

We deduced an error propagation equation from the expected
error matrix of the composite regression equation to the uncer-
tainty variances of the estimated parameters. Low-pass filtered
measurement data should be used to estimate system parameters,
but source data must be used for uncertainty analysis. We defined
the discrepancy ratio b of the model premises. The b ratio is more
sensitive than the coefficient of determination COD. Good judg-
ment considering use of both indices is recommended.

(c) Excitation waveform suitable for system identification

A long-period sinusoidal excitation enabled us to obtain
reasonable results for heat transfer system identification, even for
a somewhat rough model with few nodes and constant solar heat
gain coefficients. Despite such roughness, we estimated the heat
loss coefficient Q with tolerable error. The optimum sinusoidal
period Tp can be determined in preliminary experiments and the
like with the coefficient of determination COD. The optimum decay
or stopping term Ts of the recent study [26] is also helpful.

(d) Low-pass filter for the measurement data

A moving average of term Ta is required as a low-pass filter for
pre-processing measurement data, for the purposes of reducing the
adverse effect of high-frequency measurement noise and the
spatial discretization discrepancy between actual phenomenon and
the model. In the present case study, we numerically searched for
an optimum Ta realizing the relatively large effective capacities mi,i

and COD.

(e) Remaining problems

In relation to heat transfer systems, some problems remain,
namely, a theoretical method is needed for finding the optimum
period Tp of sinusoidal excitation and themoving average term Ta. A
method that reduces the measurement term would furthermore
improve practicality.

We conclude with a note about the expected scope of applica-
tion of these methods. We presume that the present methods will
be applied mainly to detached or multi-unit residential buildings.
In situations where heating and cooling installations are in opera-
tion, or in cases where such installations serve as an excitation
source, one should measure the supply heat flux and precisely
control its sinusoidal wave.
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Nomenclature

mi;j generalized capacitance of node i
ci;j generalized conductance from node j to node i
ri;j generalized flux parameter from source j to node i
xi diffusion potential state of node i
gi flux from source i
n total state dependent nodes
no total state independent nodes
ng total flux sources
x vector of state dependent nodes (n)
xo input vector of state independent nodes (no)
g input flux vector (ng)
M capacitance matrix (n � n)
C conductance matrix (n � n)
Co input conductance matrix (n � no)
R input flux matrix (n � ng)
m capacitance vector to be identified (nm)
c conductance vector to be identified (nc)
r flux parameter vector to be identified (nr)
a system parameter vector to be identified composed of

tð tm tc tr Þ (nm þ nc þ nr)
â estimated system parameter vector (nm þ nc þ nr)
D matrix containing time differential of state x (n � nm)
X matrix containing state of x (n � nc)
G matrix containing flux of g (n � ng)
Z composite matrix of D, X and G, ½D X G �
y observation vector containing products of given

parameters and variables (n)
k time step subscript
Dt time increment of system identification
T system identification term

nek primary regression equation error vector at time step k
Jn least-squares evaluation function for primary regression

equation
nt total time steps of the system identification period
na dimension of system parameters vector a (nm þ nc þ nr)
ns dimension of primary constraint equation
ea quadratic form primary equation error vector (na) in

composite regression equation
S first-degree constraint equation matrix (ns � na)
d first-degree constraint equation vector (ns)
ed first-degree constraint equation error (ns) for quadratic

form constraint equation
Jd least-squares evaluation function for quadratic form

constraint equation
es quadratic form constraint equation error vector (na) in

composite regression equation
Wa weighting matrix for matrix Ha ¼ P tZk$Zk in quadratic

form primary equation (na � na)
Ws weighting matrix for matrix HS ¼ Dt2,tS,S in quadratic

form constraint equation (na � na)
W composite weighting matrix of Wa and Ws (2na � 2na)
e composite error vector of tðtea; tesÞ (2na)
F composite matrix (2na � na)

P tZk$Zk and Dt2,tS,S

b composite vector (2na)
P tZk$yk and Dt2,tS,d

J least-squares evaluation function for composite
regression equation

vk residual vector (n) of primary regression equation at time
step k

Eð*Þ stochastic expectation operator for variables *, from the
equation residual is Erð*Þ, and from the measurement
uncertainty is Emð*Þ

sðâÞ sum of residual square of primary regression equation
sy total variation of primary regression equation
COD coefficient of determination
La system parameters uncertainty variance and covariance

matrix, from the composite regression equation residual
is rLa, and from the measurement uncertainty is mLa

sx measurement uncertainty standard deviation for x
sg measurement uncertainty standard deviation for g

nεk primary regression equation error vector at time step k
from the measurement uncertainty

rslj estimated standard deviation of the system parameter lj
corresponding to the j-th system parameter in the vector
a which uncertainty comes from the composite
regression equation residual and the original variance is
taken from the j-th diagonal element of matrix rLa

mslj estimated standard deviation of system parameter lj
corresponding to the j-th system parameter in the vector
a which uncertainty comes from the measurement
uncertainty and the original variance is taken from the j-
th diagonal element of matrix mLa

bj system identificationmodel premises discrepancy ratio of
j-th system parameter in vector a

sgi solar thermal load coefficient(m2), detail is described in
5.3.

mt total thermal capacity for all nodes(kJ/K)
Tp sinusoidal excitation period
Ts excitation stopping or decay term
Ta moving average term

Appendix A

There exists a known method of linearizing approximation for
long wave radiation heat transfer by the temperature difference
between both surfaces. The equivalent heat transfer coefficient ar
for the radiation is defined by Equation (A.1):

ar ¼ 0:04$εi$εj$cb$ðxm=100Þ3 (A.1)

where εi is the emissivity of the i-th surface, cb is the constant of
StefaneBoltzmann law, and xm is the average absolute temperature
of both surfaces.

The generalized thermal conductance ci,j and cj,i can be defined
by Equation (A.2) with area si of the i-th surface, and form factor fi,j
viewing from the i-th surface to the j-th surface. The order of
subscripts i and j follows the standard definition. These ci,j should
be recalculated following changes of average temperatures of both
surfaces.

ci;j ¼ ar$sj$fj;i ¼ ar$si$fi;j ¼ cj;i (A.2)

Infinite reflections between the inner surfaces of a space can be
modeled by introducing an equivalent emissivity [29]. All heat
transfer forms of conduction, convection, transmission, and this
radiation are represented by the unified generalized conductance
ci,j and realizes universal applicability with the complete linked
nodal Equation (1).
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Appendix B

The vector of the uncertainty of identification of system
parameters is expressed with the following equation.

From this, Equation (23) can be derived, which expresses the
uncertainty variance-covariance matrix of the system parameters.

La ¼ E½ðâ� EðâÞÞ,tðâ� EðâÞÞ�
¼ E

h
ðtF,W,FÞ�1,ðtF,W,eÞ,t

n
ðtF,W,FÞ�1,ðtF,W,eÞ

oi
¼ E

h
ðtF,W,FÞ�1,ðtF,W,eÞ,ðte,W,FÞt

n
ðtF,W,FÞ�1

oi
¼ ðtF,W,FÞ�1,tF,W,Eðe,teÞ,W,F,t

n
ðtF,W,FÞ�1

o
(B.2)

Appendix C

Starting from Equation (10), the process for deriving Equation
(27) is as follows.
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