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a b s t r a c t

Building airtightness is among the most important performance indices of healthy indoor air quality,
condensation, the building stack effect, and heating and cooling load caused by infiltration. Performance
parameters are usually measured by testing methods involving pressurization or depressurization by
means of a mechanical fan. Similar testing standards have now been established in ISO, ASTM, and JIS. All
methods entail finding two parameters from some measurements of the inside and outside pressure
difference and the airflow rate. Although these measurement data analysis methods are described in
informative annexes, these are important techniques and have problems to be reconsidered and solved
as a stochastic estimation and uncertainty evaluation. In the present paper, we examine improvement
using weighted least-squares, correction of the parameter estimation equation, and deduction of the
uncertainty propagation equation from not only the measurement uncertainty but also the residual of
the model equation. Also, a reliability evaluation index capable of checking the appropriateness of the
measurement is proposed. Through a computational experiment, the precision of the estimated
parameters, the uncertainty of these parameters, and the reliability indices are investigated. Further, the
present method is applied to actual measurement data and its practicality is also verified.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction established according to standards such as ISO9972 [1], ASTM-E779-
Building airtightness is an important aspect of architectural
performance which affects a wide range of phenomena. Examples
include problems related to energy consumption due to heating
and cooling infiltrating air, temperature-related comfort levels,
health issues related to air quality, interior condensation of water
vapor within walls, and building stack effects. Airtightness,
however, does not always follow the design intention. It is also
difficult to predict the location and extent of leaks from the
appearance of a building. Methods of on-site building airtightness
measurement are therefore important.

The airtightness evaluationmodel of a building envelope assumes
that rates of the infiltration and exfiltration are proportional to the
internal and external pressure difference with an exponent in the
range of 0.5e1. The performance index of airtightness is calculated
from this exponent n and a proportionality coefficient C. Determi-
nation of these two parameters is most commonly accomplished
through experimental measurements, using a fan to pressurize or
depressurize the building. Measurement standards are currently
: þ81 3 3820 5955.
yama), ohnishi@shimz.co.jp

All rights reserved.
10 [2], and JIS-A2201 [3]. In each of these standards, a similar data
analysis method is described, which is based on the measurement of
several sets of airflow rates and the internal and external pressure
differences toobtain the twoparameters.Methods foranalysisof such
measurement data are described in an informative annex. Nonethe-
less, these are important techniques that have problems worthy of
reconsideration and improvement in terms of a mathematical
method of stochastic estimation and reliability evaluation.

First, the following can be offered as items related to measure-
ment standards that are insufficient or problematic at present:

(a) Simultaneous solutions of least-squares
For the two parameters in the base modeling equation
q ¼ C$Dpn, there is a least-squares solution for the exponent n,
but the coefficient C is solved using n and does not permit for
simultaneous solution of both parameters.

(b) Evaluation of premises established for measurement and regres-
sion modeling
Conventional methods of reliability evaluation rely upon
finding the confidence intervals of estimated parameters. In
actuality, however, it is rare that the various conditions for
measurement and regression (for example, conditions such as
invariability in the airtightness parameters and small

mailto:okuyama@shimz.co.jp
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disturbance effects fromwind pressure) hold, so the problem of
negative effects on estimated parameters is a significant one.
Evaluative indices of the need for further measurement and
correction of measurement conditions are therefore of primary
importance.

(c) Weighting of measurement values (Dpj,qj)
When making one of a number of measurements, it is always
possible for sudden changes in external factors to occur or for
prerequisites to measurement to fail, causing relatively large
measurement errors. The least-squares method is susceptible
to other negative effects on measurement values. It is
therefore desirable to differentiate between the contribu-
tions to regression of the various measured values by
applying varied weights, thus lessening such negative effects.
It is even possible that in some extreme circumstances the
application of some measurements to regression is not
appropriate, so it is desirable to be able to reject such
measurements.

(d) A propagation equation for uncertainty variance
in estimated parameters
In conventional methods, residual and equation errors do not
explicitly appear in the equations used to describe uncertainty
variance for the two estimated parameters. Put another way,
there are no coupled error propagation equations for the two
estimated parameters that result from regression equation
error. Further, there is no propagation equation for the esti-
mated parameter uncertainty variance from the measurement
uncertainty variance. It is therefore impossible to evaluate the
effects on parameter estimations based on measurement
uncertainty alone. Were it possible to take such effects into
consideration, then measurements and the establishment of
regression model prerequisites as described in (b) would be
possible.

In this paper, we modify the parameter estimation equation to
allow for a simultaneous least-squares solution, and furthermore
make improvements to the weighted least-squares. In regard to the
method of reliability evaluation, we first deduce the uncertainty
propagation equation used to calculate the parameter estimation
uncertainty variance. This uncertainty propagation is used for two
types of uncertainty sources, one for causes of measurement
uncertainty and one for causes of failure of the premises of the
equation model. We also derive new reliability indices for evalu-
ating the appropriateness of measurements and regression. Also,
we use computational experimentation to investigate the accuracy
of the estimated parameters, as well as the uncertainty of these
parameters and the reliability indices. We furthermore apply the
present method to actual measurement data to verify its practi-
cality. Additionally, we consider the possibility of the basic model of
the quadratic equation instead of the conventional power law
equation.
2. The parameter estimation equations and reliability
evaluation methods

2.1. Equation model and regression equation

The basic equation below is the same as that established for ISO
and ASTM. As an aside, the JIS standard uses 1/n as the exponent
instead of n. We shall determine the coefficient C and exponent n
parameters through regression, using measurements of several
internal/external pressure differentials Dpj and fan pressurization
flow rates qj, and derive a theory for the evaluation of parameter
reliability.

qj ¼ C$Dpnj (1)

We linearize Equation (1) by taking the logarithm of each side:

loge
�
qj
�

¼ loge ðCÞ þ n$loge
�
Dpj
�

(2)

We define the new variables xi and yi as follows:

xj ¼ loge
�
Dpj
�

(3)

yj ¼ loge
�
qj
�

(4)

In order to derive a method for finding the best-fitting estima-
tions of loge (C) and n, as well as to derive a method for finding their
confidence intervals, we first define Equation (2) in matrix form
based on the linearization of xj and yj, and rewrite as a regression
equation:

yj ¼
�
1 xj

�
$

�
loge ðCÞ

n

�
¼ Z$a (5)

2.2. Parameter estimation equations using weighted least-squares

The equation error for application of the least-squaresmethod is
defined as the following vector matrix:

ej ¼ yj � Zj$a (6)

The sum of the squares of the equation errors for a group of np
total measurements is defined as an evaluation function J according
to the following equation. Here, wj is the weight of each of the
measured values, the calculation of which is described below. A t at
the upper left of a variable indicates a transposition. The trans-
position of a scalar variable results in the original scalar, but there is
nonetheless a reason for adding the transposition label t. Because
the scalar value ej contains the product of a matrix and a vector, in
order to have the least-squares evaluation function result in a scalar
value, it is necessary for ej, which is multiplied from the left, to be
a transposition.

J ¼
Xnp
j¼1

tej$wj$ej ¼
Xnp
j¼1

t
�
yj � Zj$a

�
$wj$

�
yj � Zj$a

�

¼
Xnp
j¼1

�
tyj$wj$yj � tyj$wj$Zj$a� ta$tZj$wj$yj þ ta$tZ$wj$Zj$a

�

(7)

To differentiate the evaluation function J, we next use the vector
a, which contains loge (C) and n which we seek. Setting the
differential to 0, the value a that satisfies the equation is the best
estimated value.

vJ
va

¼
Xnp
j¼1

�
� tZj$wj$yj � tZj$wj$yj þ 2$tZj$wj$Zj$a

�
¼ 0 (8)

This can be solved for the estimated parameter vector a by using
the following equation:

â ¼
2
4Xnp

j¼1

�tZj$wj$Zj
	35�1

$
Xnp
j¼1

�
tZj$wj$yj

�
(9)
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Because this is a two-dimensional inverse matrix, not one of
high degree, we can use the matrix elements to develop an explicit
solution.
â ¼
�
logeðCÞ

n

�
¼
0
@Xnp

j¼1

tZj$wj$Zj

1
A�1

$

0
@Xnp

j¼1

tZj$wj$yj

1
A ¼

2
6664

Pnp
j¼1

wj
Pnp
j¼1

wj$xj

Pnp
j¼1

wj$xj
Pnp
j¼1

wj$x2j

3
7775
�1

$

2
6664

Pnp
j¼1

wj$yj

Pnp
j¼1

wj$xj$yj

3
7775

¼ 1 Pnp
j¼1

wj

!
$

 Pnp
j¼1

wj$x2j

!
�
 Pnp

j¼1
wj$xj

!2

2
6664
Pnp
j¼1

wj$x2j � Pnp
j¼1

wj$xj

� Pnp
j¼1

wj$xj
Pnp
j¼1

wj

3
7775$
2
6664

Pnp
j¼1

wj$yj

Pnp
j¼1

wj$xj$yj

3
7775 (10)
We can also derive an expression to calculate the parameters in
Equation (10):
logeðCÞ ¼

 Pnp
j¼1

wj$x2j

!
$

 Pnp
j¼1

wj$yj

!
�
 Pnp

j¼1
wj$xj

!
$

 Pnp
j¼1

wj$xj$yj

!
 Pnp

j¼1
wj

!
$

 Pnp
j¼1

wj$x2j

!
�
 Pnp

j¼1
wj$xj

!2 (11)
This allows us to solve for the coefficient C.

C ¼ exp ðlogeðCÞÞ (12)

The exponent n is calculated as follows:
n ¼

 Pnp
j ¼ 1

wj

!
$

 Pnp
j ¼ 1

wj$xj$yj

!
�
 Pnp

j ¼ 1
wj$xj

!
$

 Pnp
j ¼ 1

wj$yj

!
 Pnp

j ¼ 1
wj

!
$

 Pnp
j ¼ 1

wj$x2j

!
�
 Pnp

j ¼ 1
wj$xj

!2 (13)
2.3. Coefficient of determination of the least-squares method

As this estimationmethod is based on the least-squaresmethod,
one can calculate the coefficient of determination, which is the
reliability evaluation index of the well-known multiple regression
analysis. First, the residual of the regression equation is defined and
calculated as follows:

vj ¼ yj � Zj$â (14)

The sum of squares of the residual error is found by the
following equation:

sðâÞ ¼
Xnp
j¼1

tvj$wj$vj ¼
Xnp
j¼1

wj$v
2
j (15)

The following equation gives the total variation:
sy ¼
Xnp
j¼1

t
�
yj � y

�
$wj$

�
yj � y

�

¼
Xnp
j¼1

yj$wj$yj � t

0
@Xnp

j¼1

wj$yj

1
A$

0
@Xnp

j¼1

wj

1
A�1

$

0
@Xnp

j¼1

wj$yj

1
A

¼
Xnp
j¼1

wj$y
2
j �

0
@Xnp

j¼1

wj

1
A�1

$

0
@Xnp

j¼1

wj$yj

1
A2

(16)

The sum of squares of the residual error and the total variation
found in Equations (15) and (16), respectively, are then used to find
the coefficient of determination (COD):

COD ¼ 1� sðâÞ
sy

(17)



Author's Personal Copy

H. Okuyama, Y. Onishi / Building and Environment 47 (2012) 373e384376
2.4. Propagation equation for the uncertainty variance of the
estimated parameters

We next derive the uncertainty variance of the estimated
parameters. First, we use the following equation to denote the
difference between the expected and estimated values of vector a:

â� EðâÞ ¼
0
@Xnp

j¼1

tZj$wj$Zj

1
A�1

$

0
@Xnp

j¼1

tZj$wj$yj

1
A

�E

8<
:
0
@Xnp

j¼1

tZj$wj$Zj

1
A�1

$

0
@Xnp

j¼1

tZj$wj$
�
Zj$aþ ej

	1A
9=
; (18)

From the vector in Equation (18), the expected value matrix will
be created, as in the following equation. The matrix is the predicted
parameter uncertainty variance-covariance matrix. We define the
estimated uncertainty variance of loge (C) and n, and the notation of
covariance, as follows:
La¼Efðâ�EðâÞÞ$tðâ�EðâÞÞg ¼
"
s2logC s2n$logC
s2n$logC s2n

#
¼
0
@Xnp

j¼1

tZj$wj$Zj

1
A�1

$

0
@Xnp

j¼1

tZj$wj$E
�
ej$

tej
	
$twj$Zj

1
A$t

8<
:
0
@Xnp

j¼1

tZj$wj$Zj

1
A�19=

;

¼ E
�
ej$tej

	
(Pnp

j¼1
wj$

Pnp
j¼1

wj$x2j �
 Pnp

j¼1
wj$xj

!2)2$

2
6664
Pnp
j¼1

wj$x2j �Pnp
j¼1

wj$xj

�Pnp
j¼1

wj$xj
Pnp
j¼1

wj

3
7775$
2
6664
Pnp
j¼1

w2
j

Pnp
j¼1

w2
j $xj

Pnp
j¼1

w2
j $xj

Pnp
j¼1

w2
j $x

2
j

3
7775$
2
6664
Pnp
j¼1

wj$x2j �Pnp
j¼1

wj$xj

�Pnp
j¼1

wj$xj
Pnp
j¼1

wj

3
7775 (19)
The diagonal elements are the uncertainty variance of the
parameters. The variance for loge (C) is described using element
(1,1) from Equation (19) as follows:

s2log C ¼ E
�
ej$

tej
	
$

2
4
0
@Xnp

j¼1

wj$x
2
j

1
A2

$
Xnp
j¼1

w2
j �2$

0
@Xnp

j¼1

wj$x
2
j

1
A$

0
@Xnp

j¼1

wj$xj

1
A$

0
@Xnp

j¼1

w2
j $xj

1
Aþ

0
@Xnp

j¼1

wj$xj

1
A2

$

0
@Xnp

j¼1

w2
j $x

2
j

1
A
3
5,

2
4Xnp

j¼1

wj$
Xnp
j¼1

wj$x
2
j �
0
@Xnp

j¼1

wj$xj

1
A2352

(20)

From this, we calculate the uncertainty variance of the coeffi-
cient C as follows:

s2C ¼ exp
�
slog C

�2
(21)

The variance for n is described using element (2,2) in Equation
(19) as follows:
2 � t 	 24
0
@Xnp

1
A2 Xnp

2

0
@Xnp

1
A
sn ¼ E ej$ ej $

j¼1

wj$xj $
j¼1

wj �2$
j¼1

wj $

0Xnp 1 0Xnp
2

1 0Xnp 12
@
j¼1

wj$xjA$@
j¼1

wj $xjAþ@
j¼1

wj
A $

0
@Xnp 2 2

1
A
3
5,

2
4Xnp Xnp

2

0
@Xnp

1
A2352
j¼1

wj $xj
j¼1

wj$
j¼1

wj$xj �
j¼1

wj$xj

(22)

2.5. Two methods for determining variance of equation error and
weighting coefficients

Here we will consider two methods for defining Eðej$tejÞ. One
method is to take the average of the residual errors of the regres-
sion equations. Doing so takes into account not only the
measurement error as a source of uncertainty, but also the effects of
inadequate fulfillment of the premises for the regression equation
model, such as invariability, uniformity, and linearity. The other
method is one that assumes that only measurement uncertainty
has an effect on the equation error. That method is described below.

When Eðej$tejÞ is taken from residual error, the calculation is
performed using the following equation:
vE
�
ej$

tej
	 ¼ 1Pnp

j¼1
wj

Xnp
j¼1

tvj$wj$vj ¼ 1Pnp
j¼1

wj

Xnp
j¼1

v2j $wj (23)

Here, the v subscript to the left of the expected value function E()
indicates a residual error. This along with the uncertainty variance
of the parameters calculated using Equations (20)e(22) are repre-
sented as vs

2
C and vs

2
n, respectively.

Twomethods of defining theweightswj of each of themeasured
values can also be considered. One method is weighting by resid-
uals, and the other method is weighting by measurement
uncertainty.

In the first method, weighting by residuals, if a residual vj is
relatively large then it is taken to be a measurement value with low
reliability, and is therefore assigned a relatively low weight. At first,
all weights are set to 1 and the two parameters are estimated. After
theresiduals are calculated, theweights are calculatedalong the lines
described, and then the parameters are estimated once again. This is
repeated until the estimated parameters converge on some value.

In the weighting by residuals, a weight vwj is calculated
according to Tukey’s biweight function [4]. During the repetition
and convergence process, the following equation is used with the
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residual vj of the previously estimated parameter and the expected
value vEðej$tejÞ of the equation error to calculate the next weight:

vw
0
j ¼

"
1�



1
c2r

�
$

 
v2j

vE
�
ej$tej

	
!#2

(24)

In cases where the calculation within the brackets on the right
side of Equation (24) is negative, however, a weight of 0 is assigned.
This process avoids negative effects on parameter estimation that
would occur due to large errors caused by outlier measurements. In
this equation, the constant cr is generally taken to be some value
between 5 and 9 [4]. It is possible, that in the case of measurement
data of this sort such typical and conservative values need not be
adhered to, with a smaller value being more appropriate. In the
following case study, however, a minimum value of 5 is used.

In the second method, weighting by measurement uncertainty,
for a given j-th measurement value the propagation rule from the
measurement uncertainty variance to the equation error variance

ms
2
j is calculated according to the following equation:

ms
2
j ¼ ms

2
q$

 
vyj
vqj

!2

þms
2
Dp$

 
n$

vxj
vDpj

!2

¼ ms
2
q$

 
1
qj

!2

þms
2
Dp$

 
n
Dpj

!2

(25)

The measurement uncertainty variances are represented as ms
2
q

and ms
2
Dp for the air flow measurement and the differential pres-

sure measurement, respectively. The subscript m to the left of each
variance means “measurement.”

The expected value of the equation error variance from
measurement uncertainty is calculated as the average of the vari-
ance of the measurement values in Equation (25). Here, the
subscript m to the left of the expected value function E() means
“measurement.”

mE
�
ej$

tej
	 ¼ 1Pnp

j¼1
wj

Xnp
j¼1

ms
2
j $wj (26)

Furthermore, in weighting by measurement uncertainty, too,
a weight mwj is calculated according to Tukey’s biweight function.

mw
0
j ¼

"
1�



1
c2r

�
$

 
ms

2
j

mE
�
ej$tej

	
!#2

(27)

Once again, in cases where the calculation within the brackets
on the right side of the equation is negative, a weight of 0 is
assigned.

The parameters estimated with weighting by Equation (27) and
the uncertainty variance of the parameters calculated using Equa-
tions (20)e(22) are represented as ms

2
c and ms

2
n, respectively.

Weighting by residuals requires repeated calculations like those
above until the calculations converge; in weighting by measure-
ment uncertainty, too, because the exponent n is contained within
the propagation rule for the error, repetition until convergence is
required. The parameters C and n are also both estimated using
these two weighting methods. The estimated standard deviations
of their uncertainty are defined as vsc and vsn, and msc and msn,
respectively. The calculation procedure is shown in Fig. 1.

It is likely better to utilize the results for parameters C and n by
weighting residuals. The reason for this is that the cause of
uncertainty in the estimated parameters is likely to arise from
inadequate fulfillment of the premises for the regression equation
model, such as invariability, uniformity, and linearity, rather than
only the measurement uncertainty. Therefore, the uncertainty
standard deviations of the estimated parameters should also be
adopted by using the weighting from the equation residuals.

2.6. The discrepancy ratio b of the regression model premises and
the estimated parameter standard deviations

The most important factor for actual implementation is an
evaluation index allowing for determination as to whether the
various premises for measurement and regression have been met,
thereby allowing appropriate results to be obtained. This is related
to item (b) in the list of problems given in Introduction. As shown in
the following equations, the ratios of the standard deviations of
estimation uncertainty for those parameters derived from the
regression residuals vsc and vsn, and the standard deviations of
those derived from the measurement error msc and msn are taken,
and defined as the discrepancy ratio b of the regression model
premises [5,6]. If this ratio b is greater than 1, it is assumed that
some of the premises were not upheld, and thus that either the
measurement should be performed again or the premises for the
regression model and measurements should be reconsidered.

bC ¼ vsC

msC
(28)

bn ¼ vsn

msn
(29)

2.7. Confidence interval of the estimated parameters

The computerization of measurement devices in recent years
has simplified taking numerous measurements. While in the past
it has been necessary to use the suppositions of a t-distribution to
estimate confidence intervals for a limited number of measure-
ments, it is now more commonly possible to use direct calcula-
tions and the postulates of the various variances and normal
distributions to estimate the confidence intervals. In other words,
in the case where Equations (20)e(22) are taken as the propaga-
tion equations from regression equation residual, it will be
possible to estimate the confidence intervals of the estimated
parameter from the standard deviations vsc and vsn and a required
accuracy.

However, since least-squares regression is performed in the
logarithmic space, the assumption of a normal distribution of the
probability density is valid only in that logarithmic space and not in
the real space. The probability of the estimated loge (C) is distrib-
uted with the standard deviation slogC from Equation (20). For
example, when a probability of 0.99 is required, the normal
distribution function gives the multiplier for slogC as 2.57, and the
confidence interval will be the range of �2.57slogC around the
estimated loge (C). Thus, after calculation of the upper and lower
limits in logarithmic space, by taking the exp() transformation to
the real space, the real confidence interval can be obtained.

On the other hand, the exponent n has been estimated in the
samemanner as in the real space, and the uncertainty variance s2n is
calculated by Equation (22). Thus, the confidence intervals around
the estimated n is �2.57sn.

3. Verification case study

Using a commonly used spreadsheet application, we created
a worksheet based on the description above and performed a veri-
fication case study.
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Fig. 1. Weighted least-squares calculation flow diagram using two types of weights.
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3.1. Verification of estimation accuracy and reliability for estimated
parameters C and n

We verified that the predicted standard deviations vsC and vsn
for the estimated parameters C and n developed in this research
would appropriately estimate the true error. To do so, we developed
a model of an air flow rates network of a building with three
airtightness grades and performed a computer simulated fan
depressurization test. The simulation was performed using the
thermal and air flow rates network simulation program NETS [7].

3.1.1. Finding the true values of C and n
Using the three-grade airtightness model, we conducted simu-

lations of exhaust fan depressurization at a fixed airflow rate, and
Fig. 2. Measurements of Dpj and qj by computational experiment.
created 15 pairs of measurements (Dpj,qj) distributed between the
range of 10 Pae50 Pa for internal/external pressure differences.

We took the airflow (qj) and the internal/external pressure
difference (Dpj) values as the true measurement value with zero
measurement uncertainty. In the simulation model, pressure
differential readings were taken at floor level, internal and external
temperatures were set to be the same, and external wind force was
taken to be zero. Using this data with zero measurement
Fig. 3. Comparison of three estimation methods for C and confidence intervals.
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Fig. 4. Comparison of three estimation methods for n and confidence intervals.
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uncertainty, we used the method for parameter estimation devel-
oped in the present study to estimate C and n, and took these as the
true values.

3.1.2. Estimating C and n under the effects of measurement
uncertainty

We next created simulated measurement values by using the
proposed measurement uncertainty standard deviations msDp and
msq and a random number generator to create measurement errors,
and applied these to the true values for the results of calculating Dpj
and the given air flows qj(j¼ 1,2,.,np). In the ISO9972 standard, the
uncertainty tolerance of the pressure difference measurement is
specified to be �2 Pa, so here msDp is assigned a value of 0.5 Pa (1/4
of that value). Also, ISO specifies the airflow rate uncertainty
tolerance to be �7% of the measurement range, so we supposed
a full range of 1000 m3/h and 1000 � 0.07 � (1/4) ¼ 17.5 to be
approximated as msq ¼ 15 (m3/h).

We tested the three types of estimation and reliability evaluation
methods: the conventionalmethods ISO, ASTM, and JIS; themethod
using a constant and uniform weighting coefficient of wj ¼ 1; and
the method using a varying weighting coefficient ofwj. These latter
two methods are described in the present paper. We performed
a study on the basis of the aforementioned simulatedmeasurement
Table 1
Results of numerical experiments using three methods to estimate parameters and relia

Air leakage equivalent area 75 (cm2) A

Conventional
method

Wj ¼ 1
LS

Wj changing
LS

Co
m

Air leakage
coefficient C

Estimated value 40.24 40.24 40.86 10

bc e 0.9624 0.9584 e

Upper limit of
confidence interval

62.97 48.15 48.19 14

Lower limit of
confidence interval

25.72 33.64 34.65 77

True value 37.98 10

Air leakage
exponent n

Estimated value 0.6461 0.6461 0.6408 0.
bn e 0.6454 0.6016 e

Upper limit of
confidence interval

0.7833 0.7010 0.6914 0.

Lower limit of
confidence interval

0.5088 0.5911 0.5903 0.

True value 0.6668

COD 0.9849 0.9849 0.9862 0.
data. In the diagrams and tables, the least-squares method using
constant weighting 1 is denoted as “wj ¼ 1 LS”, and the method
using changing weightings is denoted as “wj changing LS”.

3.1.3. Verification of predicted accuracy for C and n
We regarded the difference between the true values for C and n

as described in Section 3.1.1 and the estimated parameters C and n
with a measurement uncertainty effect as obtained in Section 3.1.2
as error. We compared the three types of predicted confidence
intervals as described in Section 2.7: one is calculated by
a conventional method (ISO, ASTM, or JIS) and the other two types
are calculated from the standard deviations vsc and vsn from the
regression residuals as developed in the present study. In this
confidence interval calculation, the requested probability is
assumed to be 0.99, the conventional methods employ a t-distri-
bution, and the two proposed methods employ a normal distribu-
tion where the multiplier for the standard deviation is 2.57.

3.1.4. Comparison and discussion of prediction accuracy for C and n
Fig. 2 shows the simulated measurement data of buildings with

three airtightness grades (equivalent leakage area: 75 cm2,
200 cm2, and 400 cm2). Fig. 3 shows the true values of C, the esti-
mated C, and the confidence intervals (requested probability: 0.99).
Fig. 4 shows the same items for the exponent n. Table 1 lists these
numerical values, along with the coefficient of determinant COD
and the discrepancy ratio of model premises b, where the true value
of exponent n is 1/1.5 for all cases.

� The estimation accuracy for parameters C and n is similar among
the three methods. The weighted least-squares method is not
highlyeffective inavoiding theunfavorableeffect fromthenormal
distribution measurement uncertainty. The weighted least-
squares method will be useful for coping with sudden distur-
bances such as wind pressure change and will be discussed later.

� Confidence intervals estimated by the conventional methods
are much wider than those estimated by the proposed method.
In other words, the confidence interval accuracy of the
conventional methods is lower than that of the present
method. This same tendency is observed for the two parame-
ters in all examined cases.

� COD is almost nearly equal to 1 for all cases. b exhibits a slightly
larger change than COD. bc and bn are 1.0003 and 1.0054
respectively in the middle airtightness case, but in the other two
cases, b is less than 1, thus indicating the appropriateness of the
bility.

ir leakage equivalent area 200 (cm2) Air leakage equivalent area 400 (cm2)

nventional
ethod

Wj ¼ 1
LS

Wj changing
LS

Conventional
method

Wj ¼ 1
LS

Wj changing
LS

5.2 105.2 104.4 200.4 200.4 199.7

1.000 0.9964 e 0.9960 0.9941
3.1 119.7 117.3 239.9 217.0 214.7

.29 92.41 92.82 167.3 185.0 185.8

1.6 203.1

6574 0.6574 0.6597 0.6696 0.6696 0.6707
1.005 0.9270 e 0.8856 0.8264

7543 0.6981 0.6965 0.7246 0.6940 0.6927

5604 0.6167 0.6228 0.6147 0.6453 0.6486

0.6668 0.6668

9919 0.9919 0.9927 0.9972 0.9972 0.9975
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Fig. 5. Measurements and results by three estimation methods in case with varying equivalent air leakage area.

H. Okuyama, Y. Onishi / Building and Environment 47 (2012) 373e384380
measurement. Under the condition where the assumed
measurement uncertainty standard deviation for the evaluation
is the same as the artificially generated uncertainty standard
deviation, it isnatural that themagnitudeofbwouldbe close to 1.

3.2. Evaluative capability when premise of invariability is not
upheld

We created measurement values for simulated measurements
of models with a changing leakage area, caused by internal/external
pressure differentials. For example, the rubber valve leakage area
will be affected by the pressure difference. Similar components and
materials are also used in actual buildings.

In the testing model, the leakage exponent n is set to 1/1.5 and
held constant, but the leakage area a (cm2) changes according to
the pressure difference Dp (Pa). For 0� Dp< 30, a¼ 250þ 5Dp, and
for 30 � Dp, a ¼ 400. Simulated measurements were taken at 15
points within the range of 10e50 Pa. Where the equivalent leakage
area a (cm2) is defined by the following equation:

Dp ¼ r

2



1

0:36

�1
n
$
�q
a

�1
n (30)

The data for the simulated measurement are shown by the left
diagram in Fig. 5. The center and the right diagrams in Fig. 5 show the
estimated values and the confidence intervals of C and n. Table 2 lists
thesenumericalvalues,aswell asCODandb, in the lefthalfof the table.

In general, when making measurements, one is unable to
recognize the change in the parameter C. However, it can be
ascertained that the index b is greater than 1. Thus, we can
Table 2
Comparison of parameter and reliability estimation by three methods for two cases with

Case with varying C

Conventional
method

Wj ¼ 1 LS

Air leakage
coefficient C

Estimated value 96.35 96.35
bc e 1.014
Upper limit of
confidence interval

130.0 110.9

Lower limit of
confidence interval

71.39 83.68

True value e

Air leakage
exponent n

Estimated value 0.8677 0.8677
bn e 1.339
Upper limit of
confidence interval

0.9569 0.9096

Lower limit of
confidence interval

0.7786 0.8258

True value e

COD 0.9951 0.9951
determine whether the model premises are upheld. On the other
hand, CODs are very close to 1 in any method, and problems with
the model premises cannot be found from COD.

3.3. Capability of excluding data with sudden error due to
disturbance

Tukey’s biweight method can be used to eliminate outlying
measurement values that are the result of sudden errors; accord-
ingly, we investigated whether this function would work as
expected. Assuming condition of awind gust, we added error to 1 of
the 15 measurements in the case with the equivalent leakage area
of 400 (cm2) described in Section 3.1. The pressure of the gust of
wind is assumed 12 (Pa). The left diagram in Fig. 6 shows the
measurement data distribution. The center and the right diagrams
in Fig. 6 show the true values and the confidence intervals of
estimated C and n. Table 2 lists these numerical values, as well as
COD and b, in the right half of the table.

The biweight method assigned zero weight to that pair of data
affected by the sudden disturbance. Good agreement is observed
between the estimated parameters and the true values for only the
results by the biweight method. In the constant weight method, bn
is much greater than 1, but in the varying weight method, b is less
than 1. We can find the suddenly disturbed data by examining the
weights and b in this way.

3.4. Verification using actual measurement data

We investigated whether the method of analysis and evaluation
presented in this paper gave the desired results for actual building
varying C and sudden wind disturbance.

Case with sudden disturbance

Wj changing LS Conventional
method

Wj¼ 1 LS Wj changing LS

95.71 241.7 221.5 199.4
1.011 e 1.085 0.9959
108.9 558.2 296.8 214.0

84.15 104.6 165.4 185.8

203.1

0.8696 0.6059 0.6344 0.6717
1.285 e 3.489 0.8776
0.9079 0.8584 0.7229 0.6932

0.8313 0.3533 0.5458 0.6501

0.6668

0.9957 0.9951 0.9951 0.9957
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Fig. 7. Five cases of measurement data for actual buildings.

Fig. 6. Measurements and results for three estimation methods in case with sudden wind disturbance.
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measurements. We took up five test cases for five different build-
ings. These cases have several different features such as airtight-
ness, temperature difference inside and outside, and strong or weak
wind conditions. These buildings are described below.

(1) Two-story log cabin. The temperature difference between
inside and outside was large. Total floor area was 149.81 m2.
The measurement time was September 9, 2003, 13:45e15:00.
Indoor and outdoor temperatures were 25.1 �C and 32.6 �C.
Wind velocity was less than 1.0 m/s.

(2) Two-story steel-frame house. The climate was calm and there
wasno temperaturedifferencebetween insideandoutside. Total
floor areawas 114.27m2. Themeasurement timewas December
17, 1999, 10:30e11:00. Indoor and outdoor temperatures were
12.5 �C and 12.5 �C. Wind velocity was less than 0.5 m/s.

(3) Two-story house with prefabricated thermal insulation panel.
There was a slight breeze and no temperature difference
between inside and outside. Total floor area was 95.06 m2. The
measurement time was November 11, 1999, 10:00e11:00.
Indoor and outdoor temperatures were 15.0 �C and 15.0 �C
Wind velocity was less than 1.0 m/s.

(4) Two-story lightweight steel-frame house. This structure was
found to have low airtightness 5.0 cm2/m2 according to the JIS
performance index. Total floor area was 84.47 m2. The
measurement time was November 5, 1999, 12:00e13:00.
Indoor and outdoor temperatures were 19.3 �C and 18.5 �C.
Wind velocity was less than 1.0 m/s.

(5) Two-story wooden-panel house. Wind speed was relatively
high. Totalfloor areawas 147.50m2. Themeasurement timewas
September 9, 1999, 10:30e11:30. Indoor and outdoor tempera-
tures were 27.6 �C and 28.3 �C. Wind velocity was 1.0e3.0 m/s.

Fig. 7 shows the distribution of airflow rate and pressure
difference measurements. Fig. 8 shows the estimated C and the
confidence intervals making a comparison between the three
methods. Similarly, the results for the estimated exponent n are
shown in Fig. 9. Table 3 shows these numerical values along with
COD and b.

We can see that the confidence intervals obtained by the
conventional method are larger than that of the proposed method,
and therefore we can describe the uncertainty of the conventional
reliability evaluation method as being relatively large. In case (1)
with a large temperature difference, as well as in case (5) with
a large wind velocity, it is found that the discrepancy ratio b is
greater than 1. Therefore, we can identify that the premises of the
system identification model are not sufficiently fulfilled in these
two cases. In spite of the undesirable results that bwas greater than
1, COD of these two cases are nearly equal to 1; thus, COD is
insufficient in the detection of this type of problem.
4. Scope of the index b and reconsideration of the
conventional model

The discrepancy ratio b, as an indicator of fulfillment of
measurement and system identification premises, is generally not
effective in relation to systematic uncertainty such asmeasurement
device calibration errors or defects. This is also a limitation on using
the weighted least-squares method to reduce the miscellaneous
negative effects of disturbances.

However, when using an insufficiently zero-adjusted differential
pressure-measuring instrument, for example, there is a possibility of
a non-zero airflowrate even if the instrument reads zero. Such a case
mayresult in structural differences between the regressionequation
and the real-world phenomenon, increasing the residue and
therefore making the discrepancy ratio b become greater than 1. In
this way, we can suppose insufficient realization of some premises.
Namely, if the real-world phenomenon differs from the regression
equation structure, or if parameters that should remain constant are
varying, then in many cases these differences will appear as
regression equation residuals and we can suppose insufficient
realization of the premises based on the index b. Such an evaluation,
however, is only appropriate when all weightings of wj are 1.

In the actual building measurement case (1) in Section 3.4,
which featured a relatively large buoyancy effect caused by internal
and external temperature differences, bn is 1.467 and bC is 1.024. In
case (5), which had a relatively large wind pressure, bn is 1.078 and
bC is 1.004. In the case of a varying opening area in Section 3.2, bn is
1.339 and bC is 1.014. In Section 3.3 case with gusting winds, bn is
3.489 and bC is 1.085. This case of disturbance due to wind gusts
causes a measurement value to be an outlier from the group, and
theweightwj becomes zero and themeasurement will be excluded.
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Table 3
Results of actual building tests using three methods to estimate parameters a

Case (1) Ca
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m

Air leakage
coefficient C

Estimated value 57.86 57.86 58.00 14
bc e 1.024 1.017 e

Upper limit of
confidence interval

93.51 69.98 68.80 16

Lower limit of
confidence interval

35.79 47.83 48.90 13

Air leakage
exponent n

Estimated value 0.7814 0.7814 0.7804 0.
bn e 1.467 1.350 e

Upper limit of
confidence interval

0.9141 0.8340 0.8276 0.

Lower limit of
confidence interval
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Here, we call di the inertia discharge coefficient, dv the viscosity
discharge coefficient and gw equivalent gap width (cm). In the
original equations, di and dv are explained using several parame-
ters; nevertheless, deductive calculation might be difficult. We
further call fi and fv the inertia regression coefficient and the
viscosity regression coefficient, respectively. One method to obtain
the equivalent leakage area a (cm2) and the equivalent gap width
gw (cm) is to solve for the parameters a and gw after regression for fi
and fv, and setting di and dv to 1.

It is possible to develop similar least-squares system parameter
estimations and uncertainty evaluation methods by regarding the
quadratic Equation (31) as a new regression equation. A probable
merit of the quadratic equation model of measurement data anal-
ysis is that we can expect better regression accuracy than with the
conventional model, because the regression calculation of the
conventional equation model is done in logarithmic space. Con-
cerning the notation of the building airtightness performance index
used in the JIS standard, the exponent n is not indicated but only a,
which could be a problem. Also, even in the quadratic equation
model gw would also be required, not only a.

5. Conclusions

We derived a weighted least-squares method to estimate the
two parameters C and n from the measurement of Dp and q, and
a method for evaluating the reliability of the estimated parameters.
For the reliability evaluation, we deduced uncertainty propagation
equations for the two parameters from the regression equation
error, and defined the discrepancy ratio b for the premises of the
system identification model.

We derived two methods for assigning weights to each of the
measurement values: weighting by residuals and weighting by
measurement uncertainty. Weighting by residuals is effective in
reducing the undesirable effects caused by sudden disturbances
such as a gust of wind. Weighting by measurement uncertainty is
useful in that it assigns smaller weights to small pressure differ-
entials and airflow measurement values for which uncertainty can
be expected to be large. In most cases, however, one can assume
that weighting by residuals is the more appropriate approach.

The introduced uncertainty standard deviation for the parame-
ters allows one to know the confidence intervals within which true
values can be found at a specified degree of certainty. The present
method estimates the intervals more precisely than the conven-
tionalmethod: namely, the estimated interval around the true value
is wider for the conventional method than the proposed method.

The discrepancy ratio b for the measurement and regression
premises can be used in the determination of whether measure-
ments and regression were a success or failure. The advantages of
b for distinguishing the invariability of the estimated parameters
were verified through a numerical experiment using a model in
which the leakage areawas varied by the pressure difference, and in
this case b became greater than 1.We also confirmed the usefulness
of the weighted least-squares method in reducing the undesirable
effects of sudden disturbances, which is accomplished by assigning
zero or small weight to measured values with large error. However
the index b is generally not effective in relation to systematic
uncertainty such as measurement device calibration errors.

When we tested the presented method using measurements of
five actual buildings, the discrepancy ratio b became larger than 1
in the two cases where winds were strong or the temperature
difference between inside and outside was great. This result shows
that the discrepancy ratio b can be used to evaluate the establish-
ment of premises for measurement and regression.

Furthermore, following a reconsideration of the basic model of
the conventional power law equation, we can expect more
reasonable and accurate performance indices with the quadratic
equation model.
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Nomenclature

qj j-th air flow rate in np pairs of measurements (m3/h)
Dpj j-th pressure difference in np pairs of measurements (Pa)
C Parameter of leakage coefficient to be estimated
n Parameter of leakage exponent to be estimated
xj loge (Dpj)
yj loge (qj), yj with top bar means average value
np Total pairs of Dpj and qj measurements
a Vector containing parameters loge(C) and n
â Vector containing parameters loge(C) and n estimated by

the least-squares method
Zj Row matrix containing values 1 and xj
ej Regression equation error caused by j-th measurement
J Evaluation function of least-squares
wj Weighting coefficient for j-th measurement
w0

j Updated weighting coefficient in iterative convergence
calculation

vwj Weighting coefficient for j-th measurement calculated
from regression equation residual

mwj Weighting coefficient for j-th measurement calculated
from measurement uncertainty

vj Regression equation residual for j-th measurement
sðâÞ Residual square sum
sy Total variation
COD Coefficient of determination
Eð Þ Calculation operator of stochastic expectation

vEðej$tejÞ Expected square of regression equation error from
residual

mEðej$tejÞ Expected square of regression equation error from
measurement uncertainty

La Variance and covariance matrix of estimated parameters
s2log C Variance of estimated loge (C) in logarithmic space

s2C Variance of estimated C

vsC Standard deviation of estimated C from regression
equation residual

msC Standard deviation of estimated C from measurement
uncertainty

s2n Variance of estimated n

vsn Standard deviation of estimated n from regression
equation residual

msn Standard deviation of estimated n from measurement
uncertainty

ms
2
Dp Measurement uncertainty variance of pressure difference

ms
2
q Measurement uncertainty variance of air flow rate

ms
2
j Regression equation error variance of j-th measurement

bC Discrepancy ratio of model premises for parameter C
bn Discrepancy ratio of model premises for parameter n
b Generic notation of discrepancy ratio for all parameters



Author's Personal Copy

H. Okuyama, Y. Onishi / Building and Environment 47 (2012) 373e384384
r Air density (kg/m3)
a Equivalent leakage area (cm2)
gw Equivalent gap width (cm)
di Inertia discharge coefficient
dv Viscosity discharge coefficient
m Viscosity (Pa s)
fi Inertia regression coefficient
fv Viscosity regression coefficient
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