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System Identification Theory of the
Thermal Network Model and an
Application for Multi-chamber Airflow

Measurement

HIROYASU OKUYAMA*

A comprehensive theory of multi-chamber air infiltration measurement using a single tracer gas is
Introduced from the general stand point of system identification. The thermal network model can
be applied not only to the temperature transfer and diffusion system but also to the tracer gas
transfer system. This model is formulated mathematically in a state equation. The coefficients in the
state equation represent airflow rates of infiltration. Two theories for estimating these
coefficients are deduced from the least square. These are batch and successive identification.
Further, the evaluation method of estimation errors that has been so far insufficient is described.
Finally, the accuracy and the practicality of the theory are confirmed by the actual measurement

system and experiments.

1. INTRODUCTION

THE MEASUREMENT of building air infiltration is an
important technique in evaluating the energy con-
sumption of heating or the efficiency of contamination
control. However the airflow rate of infiltration is difficult
to measure directly, and therefore is usually estimated
indirectly using a tracer gas. In this method, temporal
variation of the gas concentration can be expressed by
an ordinary differential equation by assuming the building
interior to be a single zone and the tracer gas to mix
uniformly in that zone. The rate of infiltration becomes a
coefficient in this equation. By measuring the variation
of the gas concentration, an indirect estimation of the
air-flow rate of infiltration is obtained through this equation
as a relating equation. This method is called a single-
chamber air infiltration measurement method.

In the actual situation there are a number of rooms in
a building, and even if the doors between rooms are kept
open, the uniformity of the gas concentration is often
not realized. Even if an attempt is made to carry out
measurement of a single room, the gas concentrations in
adjacent rooms are not necessarily equal to that of the
open air. Under these actual conditions, measurement by
a single-chamber method will result in a serious error.
On the other hand, not only the airflow rate between the
inside and outside of a building, but also the interzonal
airflow rate is a valuable piece of information. Conse-
quently the multi-chamber airflow measurement will be
required.

In the case of single-chamber air infiltration measure-
ment, there is only one airflow rate to be estimated and
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only one measurement of gas concentration. The number
of unknown quantities coincides with the number of
known quantities, therefore, the airflow rate can be
obtained easily. However in the case of multi-chamber
measurement, the number of airflows to be estimated can
far exceed the number of rooms. The number of airflows
becomes the number of rooms plus one squared, at the
maximum. In short, a large number of airflow rates must
be estimated from a relatively small number of gas con-
centration measurements. Here lies one of the great
difficulties in the multi-chamber airflow measurement.

The multi-chamber airflow measurement methods cur-
rently under study may be broadly divided into two cat-
egories ; one using a single tracer gas, and the other using
multiple tracer gases. By using multiple tracer gases, the
number of equations can be increased to match the num-
ber of unknown airflows. Thus, the mathematical process
to obtain the airflow rate becomes simple. However, in
the case of multiple tracer gases, the measuring apparatus
becomes complicated. Moreover, it cannot be applied to
a building with a larger number of rooms than utilized
gases. In the measurement method presented in this
paper, a single tracer gas is used.

The conventional airflow measuring processes can also
be classified by the method of tracer gas injection. They
comprise a decay method, a constant-feed method and a
constant-concentration method. The tracer gas injection
may be regarded as excitation to the gas transfer and
diffusion system, and the measurement of gas con-
centration as its response. Therefore, all three methods
attach some conditions to the excitation and response.
However, the measurement method of the present paper
is outside of these three categories. The essential point
of this method is that the adequate variation of gas con-
centrations can be secured either in time or in room-
to-room relationship. To obtain this variation of gas
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concentration, the injection of tracer gases may be made
at random.

Sinden [1] gave a fundamental theory on the transfer
and diffusion of a single tracer gas in a multi-chamber
building. The simultaneous ordinary differential equa-
tion of vector matrix form that he introduced describes
the transition after stopping injection of tracer gas, but
does not describe the variation during injection. In his
method, a simultaneous equation with the airflow rate as
an unknown quantity is obtained by taking as many
measurements in the decay process of gas concentration
as there are number of rooms plus one. It can therefore be
regarded as a kind of decay method using a single tracer
gas. However, variations between rooms are small in the
decay process of tracer gas concentration. Therefore,
some of the simultaneous equations may become linearly
dependent and the equation unsolvable. Further, as this
is not a statistical method, it is easily affected by measure-
ment errors. Honma [2] also investigated the method of
using a single tracer gas. He adopted the least square
method, which he applied not to a set of simultaneous
ordinary differential equations but to a single equation
for every chamber. Therefore the coupling between
chambers does not hold, and sometimes a correct solu-
tion cannot be obtained. Grimsrud er al. [3] performed
experiments for the case of three chambers by using N,0
(nitrous oxide) as a tracer gas. The theory is the same as
Sinden's. They stated that the results were not satis-
factory. On the other hand, the method of using multiple
gases has been tested by a number of researchers.
However, never more than six kinds of gases seem to
have been used.

The theory presented here is neither an improvement
nor a development of these past results, but a new general
and wide-ranging theory based on a viewpoint more com-
prehensive than these methods. In the theory of the
present paper, the transfer and diffusion system of tracer
gas concentration is expressed by a state equation in the
system theory [4]. The airflow rates of infiltration are
parameters in this state equation and the gas con-
centrations are the states. Thus, obtaining airflow rates
is regarded as a type of system identification [S]. The
theory of the present paper can be applied not merely to
the tracer gas transfer system but also to the temperature
transfer and diffusion system. Namely this theory is gen-
erally applicable to a heat transfer system as well. In the
present paper, first of all, the mathematical model of the
general transfer and diffusion system will be described.
This model is a general nodal system suitable for com-
puter utilization, which will be called the network model.
Especially when applying this model to a temperature
diffusion system, it will be called the thermal network
model. By the definition of the parameters and their
subscripts in the mathematical model, the network model
is generally described as a state equation. Next, the esti-
mation theory of the parameters in the state equation
will be described. Based on the least square method, this
leads to two kinds of identification methods, batch and
successive. Further will be described the evaluation
method of estimation errors that has been so far
insufficient. Finally, the multi-chamber airflow measure-
ment system that has been developed on the basis of this
theory, and the verification experiment at the National

Swedish Institute for Building Research and the experi-
ment on an actual building conducted in Tokyo will be
described.

2. STATE EQUATION OF THE
NETWORK MODEL

It is important to define the mathematical model for
the tracer gas transfer and diffusion before the devel-
opment of an estimating theory for the airflow rates. For
example, Axley [6] proposed a mathematical model of
the contaminant dispersion system, constituting a set of
simultaneous ordinary differential equations in a similar
way to the finite element method. The matrices of the
total system of equation are formed by adding up the
submatrix for each element, resulting in a more com-
plicated procedure than the present approach. Axlay
states that his method enables a mixed idealization of
microscopic and macroscopic models through the com-
patibility with the finite element method. However, the
nodal equation for the unified system in the present
approach can also realize the same goal in a much simpler
manner.

The transfer system of tracer gas in a multi-chamber
building is translated into a mathematical model using a
nodal system. Each chamber has an air volume as a
characteristic and is regarded as a node with gas con-
centration of state. The nodes are interconnected with
airflow rates. Associated with each node, an ordinary
differential equation is represented to describe the gas
equilibrium equation. In this equation, coefficients are
the chamber volumes, airflow rates and injected tracer
gas concentration. The state variables are the chamber
gas concentrations. The input variables are the flow rates
of the injected tracer gas. For all chambers, a simul-
taneous ordinary differential equation holds. Several
other forms of nodal equations have been also introduced
including the work by Sinden [1]. However, most of these
formulations lack in generality for the expression of
boundary conditions.

The building heat transfer system is also translated
into a mathematical model by using a nodal system. The
actual heat transfer takes place in a continuous body,
therefore, to be precise, the actual heat transfer system is
a distributed parameter system. However, the approxi-
mation to a lumped parameter system through spatial
discretization makes it easier to handle. As a means of
discretization, there are a finite element method, a finite
difference method and a control volume method. Models,
by any of these methods, are considered a nodal system,
and can be expressed by the same mathematical model.
Therefore, compatibility can be realized between the
models by using three kinds of discretization methods,
and permitting interconnections as well [7]. The nodal
system with such a generality is called the thermal net-
work model. Having originated from the field of heat
transfer, the conventional symbols of that field will be
employed in the equation. For a chamber or a node,
the following tracer gas or energy equilibrium equation
holds:

n+n, n+n, ng
mit %= Yeyt xp= Y cpx+ 2ot gy (1)
j=I Jj=1 Jj=1
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where m,, denotes the volume of the i chamber or the
thermal capacity of the ™ node, and x, denotes the gas
concentratlon of the i chamber or the temperature of
the /" node, dot above x; denotes the time derivative. On
the equation's rlght hand side, . Ci represents the airflow
rate from the j chamber to i"™ chamber or the thermal
conductance from the j™ node to the /"‘ node, g; rep-
resents the release flow rate from the j gas injection
device or the heat generation of the /" heater, and ry
represents the concentratlon of the gas released to the /'
chamber from theﬁ; gas injection devnce or the ratio of
heat flow to the i node from the j heater. Lastly, » is
the number of chambers or the number of temperature
dependent nodes. In the transfer system of tracer gases,
n, signifies the number of outside air gas concentrations,
which are independent and usually equal to one. In the
case of the thermal system, n, signifies the number of
nodes with independent temperature, for example, out-
side air temperature, etc. Further, ng denotes the number
of gas injection devices or heaters. In general, x; will be
called a state variable, and g; a free input variable. It
should be noted that the sums of the right hand side of
equation (1) are implemented for all nodes. Therefore
the nodal equation of the present paper represents the
unified system of all spatial dimensions.

There are three kinds of parameters m;, ¢, r;. In
the heat transfer system, the ¢; concerning conduction,
radiation, transmission, etc., has a feature of symmetry
cj=c; , because, whichever temperature of the nodes i
and j may be higher, the heat transfer produced is the
same as long as the provided temperature difference is
the same. This is based on a type of reciprocality
principle. On the other hand, the ¢; concemmg a fluid
flow has an asymmetric property. If heat is transported
from the node j to 7 by a fluid flow (volume flow rate ¢,
specific heat ¢, and density o), then cj=¢, 0°q, and
¢;; = 0. Since the c; represents several transfer forms in
this unified manner, it will be called a generalized con-
ductance. The parameter r; will be called a free input
coefficient, and the order of the subscripts i and j indicates
the direction. Parameter m;; is generally defined also in
the condition of i/ # j. In the finite difference model of a
heat transfer system, control volume model, etc., mj;
exists only in the condition of / =, and the heat capacity
of nodes will be m;. Further, in the tracer gas transfer
system model of a multi-chamber case as well, the
chamber volume is m;. However in the heat transfer finite
element model, there exists a heat capacity m;; with i # j.
This means that the heat flow into the node due to the
temperature difference contributes to the temperature
rise not only of that node itself, but also of the adjacent
nodes. Such a parameter as m; will be called a generalized
capacity. Thus, equation (1) can be described in a more
generalized form as follows:

n+n, n+ny

n
X mip k= X - ZCU X; FZ@ g9; @
J=1 J=1

In equation (2), the first term on the right hand side
shows the mass flow rate or the heat flow into the node,
and the second term the flow out of the node. This rep-
resentation is an unfamiliar one in the heat transfer field.
By the use of the mass conservation law expressed by

equation (3), equation (2) can be rewritten as equation
(4):

n+n, n+n,
2 = 2 (3)
= =
n+n, ng
Z mij X; Zc,j (x x,)+ 2r g 4)
J=1

Equation (4) is the same as equation (2) as long as
equation (3) holds true. The first term of the right hand
side in equation (4) shows that the heat flow rate is
proportional to the temperature difference in the case of
a heat transfer system. The constraint of equation (3) is
important in proving that the eigenvalues of the state
equation for the general transfer and diffusion system
have a negative real part. The state equation will be
constituted by equation (4). By defining the n-dimen-
sional state vector as x = (x,,x, . . ., x,), no-dimensional
assigned input as Xo = ‘(Xpe1, - - - , Xpe) and ng - dimen-
sional free input vector as g =(gi, ga, - . . , gng), and com-
bining the nodal equations from node 1 to n, the fol-
lowing simultaneous ordinary differential equation
holds. Where the superscript ¢ on the left shoulder of
vector or matrix means the transpose according to the
definition in traditional mathematical textbooks:

M'X:C‘X+C0'X0+R'g (5)

where the n X n matrix M is called a capacity matrix, the
nXn matrix C a conductance matrix, the nX ny matrix
Cy an assigned input matrix, and the nX g matrix R a
free input matrix. It should be noted that each matrix
element is expressed by notation defined in typical linear
algebra. The row i, column j element of the capacity
matrix M is m;. Except diagonal elements, the row i
column j element of the matrix [C, Co] is ¢;. The iy
diagonal element is a summation of —¢; from j =1 to
J = n+ ng. The row i column j element of the free input
matrix R is r;. These subscript definitions will lead us to
compatibility with finite element modeling [7].

For the purpose of computer simulation of the tracer
gas dispersion, first the parameters of airflow rates in
equation (5) have to be defined deductively, and secondly
the time integration of that equation has to be
implemented. The former problem is solved by using
another model of the airflow network [8]. For the latter
problem of time integration the exact and analytical solu-
tion using spectral decomposition [9, 10] has been given
by the author. The system identification described in the
present paper is an opposite problem to these computer
simulation methods and may be called the inverse prob-
lem in some cases.

3. MEASUREMENT EQUATION

The three kinds of coefficients mj, c; and r; will be
called system parameters. Some of the system parameters
in the state equation may be supposed to be known. A
practical example of this in the tracer gas transfer system,
is when each chamber is equipped with a mixing fan,
the chamber volume m;;, can be assumed to be known.
Further, when the concentration of the injected tracer
gas is measured, the #; can be assumed to be known. An
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example, in the case of the heat transfer system, is when
the spatial discretization is made by the finite element
method with the coefficient of the time derivative term in
the partial differential equation of the unsteady state heat
conduction problem taken as 1 , then the m;; thus obtained
has a volumetric dimension. Accordingly, m; will be
known. Or, when excitation is given to the heat transfer
system with an electric heater, the electric and thermal
conversion factor is 1 , then r;; will be known. In this way,
usually concerning a node, at least one parameter can be
assumed to be known. The system parameters other than
these are unknown and need to be estimated. In equation
(5), by shifting the terms consisting of known parameters
to the left hand side, we obtain the vector y(x, x;, g).
The resultant matrices, when the known parameters are
thus removed from M,C,Co,and R will be represented

as M,C,C,, and Rrespectively:
y=—M x+C ‘x+C,-xs+ R - g. (6)

Here will be defined the vectors of parameters that are
to be identified. Assume that there are n,, components of
the parameters of m; to be identified in the matrix M, the
vector, having these in an arbitrary element order, is
defined as m(n,,). Similarly, the vector constituted of ¢;
to be identified in matrix C and C,, is ¢(n.), and the vector
constituted of 7; in matrix R is r(»,). Thus, equation (6)
is transformed into an explicit form of vectors m, ¢, r:

y= —M<i+[é,éoj-[§ ]+R-g =D(s) - m + X(xi)

* C+G(g,) °r. (7)

Here the sizes of matrices D(x,), X(x;), and G(g,) are
respectively (nxn,,), (nxn:), and (nxn,) The con-
stituting algorithm of vector y, matrices D, X, and G is
described as follows.

y(*, x, g;) : let m; be a known parameter, then add
m;*% to the ;" element of y. Let c; be a known parameter,
then, for i or j not larger than n, add—c; x; to the i
element of y, and add ¢; -x; to the J™element. Let r; be
a known parameter, then add to the i element—r;-g;.
Here, “adding” means summing up iteratively after first
setting toy = 0.

D(x)): let the K" element in m be m;;. Then,—X; enters
the row i, column £ in D.

X(x;) : let the K element in ¢ be ¢; , then, for i orj not
larger than n, x; enters row i, column k in X, and—x;
enters row j, column £.

G(g;) : let the K" element in r be r;; . Then, g; enters row
icolumn kin G.

Given the known parameters and the parameter
vectors m, ¢, and r to be identified, then these y, D, X, and
G will be definitely determined. There exist constraints
among the parameters to be identified. The most impor-
tant of them is the mass conservation law of equation
(3). By setting up this equation for i = 1,2, ..., n, assume
this to be a system of homogeneous linear equations
concerning the vector ¢. At this time, » elements of the
vector ¢ are represented by the remaining n.—n elements.
The former is defined as ¢(n), and the latter as ¢,(n.—n).
Consequently, ¢, can be expressed by ¢, as follows:

[ @®)

The size of the matrix in this linearly dependent
relation L; is (nx(n.—n)). Matrix L, is formed by util-
izing a subroutine in the standard mathematical library,
which calculates the relationship for expressing the non-
basic column vector with basic column vector in regard
to the general rectangular matrix. The elements of the
matrix L, are —1, 0 or 1 . Next, c can be expressed with
¢, by the following equation:

c:lilési|.cm:]_"cm, (9)

S

where E, is a unit matrix of size n.—n. Although this is
the most important constraint in the tracer gas transfer
system, non-negative constraint of the estimated par-
ameters can also be considered. This is implemented by
the non-negative least square method [11] supplemented
with the linear programming. However, this constraint
will be satisfied automatically in most cases as long as
the measurement with good precision is carried out and
the proper system identification model is used.

There are several more constraints in the heat transfer
system. For example, in the case of the thermal con-
duction system, there is the symmetry constraint c;=cj;,
and from the symmetry of the volumetric matrix M,
arises the constraint m; = mj. By the use of such a priori
information, it is desirable for the identification accuracy
to reduce the size of the identifying parameter vector as
much as possible. It is not only possible to reduce the
number of identifying parameters, but also to resolve
itself into the identification of several kinds of further
basic parameters such as fundamental thermal proper-
ties. In the finite element method, the matrix M is
obtained by adding up submatrices corresponding to
each finite element, therefore, a parameter m; can be
expressed by a linear combination of several kinds of
specific heat c, and specific density 0. Assuming that the
heat transfer system is composed of m, kinds of materials,
by the m-dimensional vector A, ='(c,,,' 21,Cp2
* 03, ... Com* Om), VECtor m can be expressed as follows:

m=L,, /Zmly (10)

where L, is a constant matrix of size (n,,Xm,) and its
™ column vector can be obtained by putting cpim 2= 1,
and the other ¢,* 0 = 0, in the adding up the submatrix
process of the finite element method. There are m, kinds
of materials, so there are m, kinds of thermal con-
ductivities 4. Assuming that there are m,, kinds of con-
vective heat transfer coefficients, by the vector
Aw= (A1, A2 ooy Ay 15 QL 2y o 5 Q) OF the size my=
m+ m, vector ¢, can be expressed in the same manner
as follows:

Cn=Lima® Ao (11)
Furthermore, assuming that there are m;kinds of solar
absorptivity, by defining Z,5= (1, &z, . . . , @), VECtor r
is expressed by the following equation:
r=Lys* A (12)
By performing identification on the above Amis Ama, OF

A3, We can obtain thermal property values. Therefore,
in the discussion hereafter we will consider only the con-
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straints of the mass conservation law of equation (9).
Even if the constraints from (10) to (12) are taken into
account, that is merely to multiply their matrix L,, from
the right side by D, X and G matrices. Equation (7) can
be rewritten as follows:

y = D()%i)'m+x(xi)'L'cm+G(g/)' r. (13)

Further, for simplicity, the system parameters are
lumped together, and expressed by the following equa-
tion (14), and the corresponding D, XL, and G are
expressed by equation (15):

= ('m, ‘c,, 1), (14)
7=(D,X-L,G), (15)

where the size of a is n, = n,+n.—n+n,. Thus, equation
(13) is finally simplified to the following equation:

Y(O=L()- a. (16)

This equation will be called a measurement equation
with respect to a. Z will be defined as a measurement
matrix, and a as a system parameter vector.

4. BATCH IDENTIFICATION
As the evaluating function for identification, the time
integral of the equation error e(f) of the measurement
equation (16) will be used. First, e(¢) is expressed by the
following equation:

e(1)=y(H)— Z(1)-a. (17)

Because it is most appropriate to use a scalar as an
evaluating value, the evaluating function J, is defined as
the time integral of quadratic form of e(f):

Js(a)= [ "e)- W(o)-e(n)dr, (18)
where W(¢) will be called a weighting matrix (n X n), and
T is the time used for identification. Then, W is used for
an accurate identification, and how it is calculated will
be described in the following section. The weighting
matrix W is necessary for the Markov estimate that
realizes such good properties as unbiasedness, con-
sistency or effectiveness. Therefore, when an ordinary
unit matrix is used for W, the identification result can be
said only to be optimal value. Although the measurement
data are inherently analog values, because the measure-
ment device and data processing device are computerized,
they are treated as time discrete digital values. For this
reason, by first dividing the integral section of [0, 7] into
p parts, equation (19) is obtained:

p
=3 e e Worends (19)

Next, this equation is approximated as follows:

J (a)— ) (If,fﬁ,w’e(z)d:)(j("k‘\jlww(r)dt)

-(j(",fjlwe(t)dz) (20)

The vector e(f) is expressed by y(¢) and Z(¢). The y(f)

and Z(f) are composed x;, x; and g;. The time integrals
of these variables in the [(k—1) At, kK Af] section are cal-
culated by the following three equations.

kA .
ik = j(ki])mx,- dt = x; (kA —x; (k—1)A?), 1)

kot At
s%ik = [ (gopya ¥ = S (kA +x (R —DAD).(22)

At
sik = J(k 19 = = (9ikA) + g, ((k=180)).

(23)

Equations (22) and (23) are of a table-form approxi-
mate integration. If x; and g, have a continuous variation,
a more precise integration method can be adopted. With
these integrated values pxj , i , and g, the Zy and y;,
which are the integration of Z(¢) and y(f) in the time
section [(k—1) Atk A¢], can be expressed as the following
equation:

Z= [D(pxi), X (i) - L, G(:gi)] = [Dis Xi L, Gy,

(24)
Y= Y(oXiks sXiks sGik)- (25)

Then, equations (17) and (18) can be approximated
respectively by equations (26) and (27) as follows:

e~y Zy-a, (26)
P '
J(a): 2—7 ek'wk.ek‘ (27)
k=1 Af

In order to obtain a, which minimizes the evaluating
function J(a), a least square method is applied. This is
implemented by differentiating J(a) with respect to a and
setting to 0.

p
= Z %(_2 [Zk ‘Wk Yyt 2 4 Zk 'Wk ‘Zk -a)=0.

(28)
Thus the estimated value of a, i.e. 4 can be computed
as follows:

Py e,
5=[Z ZyWiZy [/;—'1 Zi Wiy |- (29)

k=1

5. WEIGHTING MATRIX W

A weighting matrix W is introduced to reduce the
negative influence due to measurement errors. Here let
the measurement error variances of x;, g,, be Ox: og,,
respectively. The error vanances of mtegrated values in
equations (21)-(23), i.e. 0% 0% and ‘og, can be cal-
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culated by the error propagation law as follows:

2

b3 =27 0%, (30)
21 2 2

scxiEE'Al © Oxj» 31)
1 2.2

s Gé,‘ = E AT Gg[ . (32)

The vectors of the measurement values and their
measurement error variance vectors are defined as fol-
lows:

Xk = (X1 s - - - 5%k, (33)
50 = (50xts ooy 50, (34)
Xk = (Xt -+ 55Xopenh)s (35)
50 = (5051 o, 5O pny)s (36)
&Gk -+ -5 5Gngh) 37)
0g=(0gls s 5O gng)- (38)

The values ,Xy, Xi, sg are the results of the addition
of the error vectors 48, 55, Sk, t0 the true value vectors
respectively. Since the true value vector reduces the equa-
tion error of the state equation to 0, the equation error
vector &, caused by measurement error, can be expressed
as the following:

=M px; +[C,Co] " x4 +R 52
=-M- bSxk +[C7C0] * Sxk +R '_\'Sg/( . (39)

If Ag(nXn) is used for the variance-covariance matrix
of the equation errors caused by measurement errors, it
is then the expectation matrix of & ;¢

A=ECe" € =M- E(sq' ssa) -' M +[C,Col
'E(\SX/('_/\-S,‘/‘) o [C,Co] + R'E(_\-sgk".\.s ) - R

=M -diag(;0," )" M+C,Co]
~diag(s0,1a)"'[C,Co] + R-diag(,04"10,) 'R.  (40)

gk

This employs the fact that the covariances among 45,
Su and Sy are 0 and that the covariances among the
elements within these vectors are also 0. The symbol
diag (X) designates the matrix composed only of the diag-
onal elements of the matrix X.

In this way, the propagation law from the measure-
ment error to the equation error is formulated by equa-
tion (40). According to the theory of Markov estimation,
the weighted matrix W can be calculated by the following
equation:

We=A," (41)

Here, an inconvenience is that the A, must be cal-
culated by using the matrices M, C, Cq and R including
the parameters to be estimated. In short, results are
needed to obtain the results. To solve this problem, iter-
ative convergent calculations are performed. First, set
Ay to the unit matrix. Next, by using the parameters
obtained, calculate Ay by means of equation (40), and
perform the identification again. This process is to be
repeated. However, under practical conditions, we might
have to be satisfied to make an identification calculation
with W, as a unit matrix. In the successive identification
of the next section, W, is always set to a unit matrix.

6. SUCCESSIVE IDENTIFICATION

Let us deduce the temporal discrete system of the sys-
tem parameter a. By replacing the time step number p of
equation (29) with %, it can be transformed into the
following equation:

-1
k ¢ k.t
ay :(Zl Zj'wj'zj] '[ZI Zjoyj], (42)
J= J=

with the symbols defined as follows:

—1
k 1
Jj=
kot
=2 W (@)
Jj=

Relative equations between A,_, and A;, u;, and u, can
be described:

Al =AL 42, Wz, (45)
W= et L Wy (46)

By applying the Woodbury's matrix inversion formula
[12] to equation (45), the following equation is obtained:

A= A A 'L (Wi A2y A2
L A 47)

Equation (42) is transformed by using equations (43)-
47):

a=Acw= (A= A 'Zy
(Wi Zyr A ') ™ i Ag) (et 'Z
Wiy = (oA Ly (Wit 2 A 'Z0) !
L) et AL Wiy (48)

Further, the following symbols are defined:

O =E,;Api i (Wi Ze Ay 2" 2y, (49)
Bk: Ak : le y Wk. (50)

Then, equation (48) can be expressed as a recurrence
formula as follows:

4 =D apt By (51)

Thus, the temporal discrete system concerning a is
obtained through equations (49)-(51), where E, denotes
a (n,Xn,) unit matrix. As described in the previous
section, Wy is always set to a unit matrix of (nXn).
The initial A, takes the unit matrix E, or its constant
multiples. The identifiability is examined by the rank of
A, matrix. In this case, the structural identifiability must
be considered separately from the measuremental iden-
tifiability. Unless a sufficient quantity of measurement
data is available, identification cannot be completed,
where this will be called a measuremental identifiability.
On the other hand, however much measurement data is
obtained, identification cannot be achieved if the known
and given system parameters are not sufficient in number.
This is called a structural identifiability. In airflow
measurement, usually the volumes of each chamber are
given. In general, the structural identifiability will be
satisfied, if at least one system parameter is given for
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every node. When executing a successwe identification
in real time, rank calculation of A;'in parallel is not
practical. However, in many cases, it is known indirectly
by observing the estimate results of system parameters,
when that rank has reached the full rank. Before reaching
the full rank, the results will be too large, too small or
oscillating between extreme values, but after gaining a
sufficient number of measurement values, the estimate
results will stabilize.

7. ERROR EVALUATION OF THE
IDENTIFICATION

Most of the conventional researches into the multi-
chamber airflow measurement were insufficient in the
error evaluation of the estimate results. Similarly, the
identification theory in the control engineering field is
also insufficient in error evaluation. In this section, the
evaluation method of the identification error will be
described. By regarding the identification errors of system
parameters as the propagation from the equation error,
this propagation law is formulated. The estimated vector
a of system parameters is calculated by equation (29).
Further, the error vector e; of the equation is defined by
equation (26). The expectation of this vector can be taken
as E(ej) = 0 by the unbiasedness of the Markov estimate.
Hence, the following equation holds:

a-E@)= [ZZ WL]‘{iZ Wy,J

=1

Pt " p
{Z Z;WZ ] [Z Zj'Wj'eJ-} (52)
J: Jj=

Defining the error covariance matrix of the vector a as
A (n, X n,), the following equation is obtained (using the
property that £(e;, 'e;)= [0] provided i#):

t Dt -!
Aa=Ela- 5@y @ Ea))-| $2, Wz,
Jj=1

(32w B, 0wz |

Jj=!

-1

-(ﬁ'z,-w-zjj : (53)

Next, let us consider how to calculate E(e;*'e). In

355

general, there are two causes of equation errors. One is
the measurement error, and the other is the structural
disagreement between the actual phenomenon and state
equation model. If only the measurement error is taken
into consideration, £(e;- e,) is equal to A ¢, expressed by
equation (40). If, at this time, like equatlon (41), W, is
set tvo, then it is evident thatA, is equal to Ak of
equation (43).

Furthermore, the structural disagreement of the state
equation model signifies the insufficient setting of the
state equation size or structure, and this will appear con-
cretely in the equation residual calculated by the fol-
lowing equation:

V=Y "Zj' a. (54)

[f this structural disagreement is also concluded to be
the identification error of system parameters, the identi-
fication error can be evaluated by the error propagation
from the equation residual expressed by equation (54) to
the identified parameter. This is obtamed by setting £(e;

-'e;) to the expectation matrix of v;-, 'v, quation (53).
In order to make an unbiased estimate of this expectation
matrix, by setting the degree of freedom equal to the
number obtained by subtracting the parameter number 7,
from the total summing number p, the following equation
can be used for calculation. This will be substituted into
equation (53):

P
E(ej'[ej)zp 'Zvj' I (55)

The error variance of system parameters is positioned
in the diagonal elements of A, and the covariance in the
non-diagonal elements.

Upon identification of the system parameters, the state
equation is formed accordingly. Evaluation indices will
be obtained which represent how well the actual phenom-
enon can be explained by this state equation. As a clue
to this evaluation the sum of residual squares of the
measurement equation is taken. Denoting this sum as
s(a), and by equations (54) and (42), the following equa-
tion can be obtained after a little manipulation:

s(a) = Z v;Wpv; Z y;W
Jj=1
-1
Pt Pt
_[Z yj.wj.zj].[z Zj'wj'zj]
Jj=1 J=1
Pt
Jj=1

Two evaluation indices are available depending on
what the ratio of s(a) is taken against. The first one is the
index against the measurement error. Let this sum of
residual squares be s, the following equation can be
obtained in the same manner as equation (40):

p t
Sozéﬁx'tM‘[ZWj] 'M'b6x+§($x‘ [C,C()]
=

{j

Accordingly, the f; defined by the following equation

M

M

t
WJJ [C.Col g0y 50, R{

Wj]-R'ch. (57)
J
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will be called the ratio of sum of residual square to
measurement error:

s(a

fO = Q (58)
S0
The other evaluation index is the ratio of s(4) against

the total variation of the measurement vector y,. This is
based on the same idea as the so-called coefficient of
determinant. First, the weighted average of'y, is defined
as y and calculated by the following equation:

-1
y:[. Wj] '[fwj')'j] . (59)
J

J=1
Then, the total variation s, can be calculated by the
following equation:

M

1

Pt _ _
Sy=2 ;Y)W (y;-y)
J=

t

M

1

p
yj"wj')'j_Y°[Z'\NjJ'y~ (60)
J J=1
Hence, the coefficient of determinant £, can be calculated
by equation (61):

fy=1-2@) 61)
Sy

where £, is not defined when there is a 0 element constantly
within y.

It is possible to perform a testing hypotheses of the
state equation model using these indices. A chi-square
test is used based on f; to determine whether the residual
is adequate or not by considering the measurement error.
F-testing can be performed based on f, to determine
whether the state equation model is significant or not
when viewed from the equation residual alone. Adopting
fo as the evaluation index is not practical due to the
fact that sy is dependent upon the estimated system
parameters, and also, it is unrealistic to assume that the
cause of the equation residual is only the measurement
error. An important premise is the linearity or invaria-
bility of the state equation model. In the case of air
infiltration measurement, although the airflow rate
should not vary greatly during the identification period,
variation to some extent must be admitted. Further, the
uniformity of gas concentration is assumed within a
chamber, however, sometimes this assumption does not
hold unless a mixing fan is used. These actual situations
produce the equation residual. Consequently, if the f;
value is not good, it is necessary to examine whether or
not these premises and assumptions hold acceptably.

8. EXECUTION PROCEDURE OF SYSTEM
IDENTIFICATION

In most cases, the theory of this system identification is
executed based on measurement data. Further, successive
identification becomes useful by its execution in real time.
Therefore, it is advantageous to use a microcomputer
in the operation process with flexible disks as memory
devices.

First, the batch identification will be described. The
measurement values are obtained time discretely. There-
fore, X, Xo, and g are time series with subscripts
k=1,2,... prepresenting time steps. After a sufficient

lapse of measurement time, the batch identification is
performed as follows.

First, set 4, to 0.

(i) In case of the first identification, the weighting
matrix W, is set to the unit matrix E, . For subsequent
identifications, Aoand W, are determined by the identi-
fication result &, obtained in the previous step and equa-
tions (40) and (41), then the estimation value of 4, at the.
current time step is calculated by equation (29).
(ii) Ifll 4 \- 4, || < (allowable error), then the identi-
fication is taken to be complete. Otherwise, set 4, & 4,
and repeat the calculation by returning to (i).

However, when the characteristics of the measurement
error are not well known, or when the structure itself of
the state equation is considered inadequate, it will be
acceptable even if the optimal solution is obtained with
the weighted matrix as a unit matrix.

Next, successive identification will be described. This
is to proceed with identification iteratively every time the
measurement is made at a certain time interval Av. In this
case, the discrete time system involving a; in equation
(51) is used. Where, the weighted matrix W, is always set
to the unit matrix E, . Further, the initial A, is set either
to the unit matrix E, or the same multiplied by a proper
coefficient. By giving the initial value a,, the following
computing procedure is repeated from k = 1 : (i) obtain
the A" time step measurement value, and calculate A,
from equation (47) ; (ii) calculate @, By by equations (49)
and (50) ; (iii) calculate a, from a,, by equation (51);
(iv) increase & by |, return to (i) and repeat.

Since only the data from the immediately preceding
time step is required to complete a calculation, the entire
past measurement data need not be retained. In this
calculation, the matrix inversion of the size of the number
of nodes n is required. Therefore, the quick calculation
performance is important when using a microcomputer.
For the purpose of following the time variations of the
system parameters to be identified, it is necessary to
devise some function of forgetting the past. One of the
alternatives is to replace all A, by A, /w? in the right
hand side of equation (47), where coefficient w is defined
in 1> w>0.

9. MULTI-CHAMBER AIRFLOW
MEASUREMENT SYSTEM

This system is composed of a device which creates a
temporal variation of tracer gas concentrations for each
chamber, a device to measure the injection flow rate
of the gas and the gas concentrations of each chamber
continuously, and a device to analyse measurement data
in real time. Figure 1 shows the configuration of this
system. The mass flow controller is a device which con-
trols the injection flow rate of the tracer gas and sim-
ultaneously measures it. Three microcomputers, CPU-
1, CPU-2, and CPU-3 are employed, which have the
following functions respectively. Fitst, the CPU-1 oper-
ates:

(a) to open/close the solenoid valves by selecting
chamber numbers for tracer gas injection according
to schedule or by random numbers;
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Fig. 1. Diagram of multi-chamber airflow measurement system

(b) to control the mass flow controller by determining
the tracer gas injection flow rate according to sched-
ule or by random numbers;

(c) to open/close the solenoid valves by selecting the
chamber numbers for gas sampling according to
schedule;

(d) to collect the data of gas concentration, the chamber
number, injection flow rate and the chamber number,
to relay these data to the CPU-2.

[t takes approximately one minute for the analyser to
obtain a concentration measurement of a chamber, due
to the response lag and the purging time ofthe air remain-
ing inside the tube. Therefore, the CPU-2 operates:

(e) to achieve the simultaneous concentration data for
all chambers by performing an interpolation cal-
culation for temporal forward and backward;

(f) while recording the data of these concentrations and



358

H. Okuyama

injection flow rates, etc. successively on the floppy
disk, and relaying these data to the CPU-3.
And the CPU-3 operates:

(g) to execute the successive identification in real time
for the measurement data being received from the
CPU-2 at time intervals A ¢, and recording the analy-
sis results on flexible disks, and also outputting them
to the printer at proper time intervals.

This measurement system evolved through exper-
imentation in 1984. Some experiments were carried out

on existing buildings to investigate the applicability of

the system identification theory. The verification of the
theory itself was performed by a numerical experiment
to estimate system parameters such as heat conductances
on the finite element model of the heat transfer system
[13].

The present measurement system has several bulky
components such as, a box containing solenoid valves
and mass flow controller, a gas concentration analyser,
and three desktop computers. A practical problem in
future is to develop a compact measurement system suit-
able for field measurement.

10. VERIFICATION EXPERIMENT

After several measurements in actual buildings, the
measurement system had not been used. In 1987, the
author had an opportunity of visiting Sweden by the
invitation of Prof. Tor-G&ran Malmstrom of the Stock-
holm Royal Institute of Technology. The author had
already learned from reading Building and Environment
that Dr Mats Sandberg, who works in the National
Swedish Institute for Building Research, has access to a
ventilation test house. Upon proposing the verification
experiment of this measurement system to Dr Sandberg,
the author received his willing consent. While staying in
Sweden from November 1987 to May 1988, the author
was engaged in this experiment, spending most of the
period at the National Institute in Gévle. Although the
theory itself is correct, it was interesting to study the
effect upon the estimated result of the measurement error
of the gas concentration analyser and mass flow control-
ler, and the error due to the interpolation calculation
approximation of the gas concentration.

Figure 2 shows the global view of the test house. This
test house is used for the study of airflow within a room
or between rooms, etc. [14]. The author conducted the
experiment by slightly modifying the test environment.
Figure 3 shows a plan of the test house. Two of the rooms
were used for the simplest case. Six airfiows in this model
were simulated by using six air ducts. Because the instal-
lation of fans on all air ducts requires sophisticated room
pressure control system, only the two ducts exposed to
the outside air were large diameter ducts without fans.
By this means, the room pressure becomes slightly higher
than that of the laboratory hall, thus preventing infil-
tration airflow from the outside of the test house which
cannot be measured. Airflow rates inside the ducts were
measured, and by taking this as a reference value, error
evaluation of this measurement system was performed.
However, as it is difficult to measure directly the airflow

@zm

Fig. 2. View of the test house.

rate of the two large-diameter ducts, these were calculated
from the other four airflow rates by the law of continuity.
The measurement of airflow rates was made by using
the bend duct pressure difference [15] . Each room was
provided with two mixing fans to make the gas con-
centration uniform within the room.

The gas injection cycle was set to | h. The measured
results are shown in Figs 4 and 5. The gas concentration
variations due to the gas injection in each room are
shown in Figs 6 and 7. The measured concentration of
the outdoor air was constant at about 300 ppm. The esti-
mated system parameters are the effective mixing vol-
umes my;, (dm®) and airflow rates cy (dm® s7). Figure 8
shows the results of batch identification. Directly mea-
sured values are in parentheses (), and will be the evalu-
ation reference for estimation errors. The estimated inter-
room airflow rates are smaller than the actual values. The
largest error is about 20% against the true value. Table
1 shows the error estimation results obtained from equa-
tion (53). The size relationship of the error variance is
not estimated sufficiently. Figures 9 and 1 0 are the results
of successive identification, from which it is recognized
that the quantity of measurement data necessary for the
identification was obtained in about 40 min. Further,
after stabilization in the results of successive identi-
fication, about four small changes are observed. These
changes agree with the points where the linear approxi-

LABORATORY HALL
”"‘.a_‘_.z..f 0 T30 A L T
CHAMBER-2

.0 m? :

CHAMBER-L

SUTDOOR

D

3.7’

Fig. 3.Plan of the test house.
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Fig.4. Tracer gas injection flow rate to chamber- 1

mation error becomes maximum, which are those points
obtained by linear interpolation of the three minutes
interval concentration measurements. Therefore, this
approximation may be considered to have a great and
adverse influence on the estimation. Besides, in a separate
experiment where mixing fans were not used, an esti-
mation error as large as 90% against the true value
occurred.

fers
0.}
(125 I/min, 1S min, to Cell 1), (2: 0 I/min, 15 min, to Cel? 3)
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Fig.5. Tracer gas injection flow rate to chamber-2.
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Fig.6. Tracer gas concentration in chamber-1.

{min)

Fig.7.Tracer gas concentration in chamber-2.

11. FIELD EXPERIMENT IN ACTUAL
BUILDING

In 1984, an experiment was conducted on a two-
storied, old, wood house located at Okusawa,
Setagayaku, Tokyo. Figure 11 shows the plan of the
building. The room numbers, as defined in the identi-
fication model, are circled. For example, room No. 8 is
the stairway leading to the second floor, and the room
No. 10 represents the outside air. The measurement
device was installed in the kitchen room, and its door

() directly measured and true vaiue
| YT [ e | ] 34631 ¢
(11.50) l (36000)
«'2,1
VLIS £fs ! i 12
{10.20) . mo f/s 12 23 /s]
1186 N\, « (m )0 ; 70)
% L (13.10) I F
Y ﬂ
[ 12.80 (/S [ 32166
l (11.80) |1 &mr))
J

Fig.8.Batch identification result.

Tablel.Error estimation

Estimated error in standard deviation

anty 1371.8 dm~"

ams; a 24321 dm~~

GCas 3.464 dm’s~'
6ey, 3.489 dm”s '
GCan 1.494 dm* ™!
e 2939 dm’ s~
6 0.905 dm- s~ !
GCys 1773 dm* s
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Fig.11. Batch identification result.

connected to the room No. | was sealed. The kitchen is
excluded from this drawing. During the measurement,
all the windows and doors facing the open air and the
sliding doors between rooms were closed but not sealed.
This building was air loose, and had much infiltration
airflow. The air in each room was equally sampled from
six different spots, and after mixing with a branching
tube connector the air was led to the gas concentration
analyser. The air inside the room was mixed with a fan
of around 10 cm in diameter, attached at the tip of the
tracer gas injection tube. The arrangement was thus, so that
the assumption of uniformity in concentration is realized
in each room. The injection of the gas was carried out
according to a previously decided schedule. The tracer
gas used was carbon dioxide. The analyser has a range
of measurement. An injection schedule which does not
exceed this range was determined with the rough guid-
ance of air change rate generally obtained through
experiences.

The parameters given for identification are the volume
of each room m;; and the gas concentration r; Therefore,
g; represents the injection flow rate. The time interval
At of data sampling is one minute, and the successive
identification was also performed with a one minute time
step. Figures 12 and 13 show the temporal variations of
the tracer gas injection flow rates into rooms 3 and 8
respectively. The variations of gas concentrations in these

(/s
0.1

10:20 ~ 19:20
0 ~ 540{mir)

mml

Fig.12. Tracer gas injection flow rate to chamber-3.
(¢/s)
0.1
10:20 ~ 19:20
0 ~ 540{min)
% ’ ' T

[min}

Fig.13. Tracer gas injection flow rate to chamber-8.
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rooms are shown in Figs 14 and 15. Since there are 10
rooms in total, including the open air, the gas con-
centration was measured at 9 mm intervals for each
room, and points within these intervals were interpolated.
Consequently, because of the linear change in the inter-
polated points, a perfect agreement with the actual vari-
ation can not be assured.

Figures 16 and 17 show respectively the results of suc-
cessive identifications of airflows from room 6 to the
outside air and from the outside air to room 6. For
around the first hour, sometimes the results exceed the
high and low limits of the graph, however, they gradually
come to a settlement. In other words, around this amount
of time is required for identification. The results of the

[ppm]
2000
00 240 i
[min]
Fig.14. Tracer gas concentration in chamber-3.
{ppm)
2000

A

540
o {rin]

Fig.15. Tracer gas concentration in chamber-8.

Table 2.Volume of chamber (m?)

Uy 2229
@ 4237
(3) 6612
@ 3186
5y 2079
(6) 2545
(N 1714
(8 1643
(9)  46.15

batch identification are shown in Fig. 11. These are the
processed results based on all measurements of the initial
260 time steps. Further, in this batch identification, the
coefficient of determinant calculated was 0.260. The esti-
mated error standard deviation of airflow rates obtained
by the residual analysis of the measurement equation is
expressed in Table 4. Another cause of this error, besides
the measurement and interpolation error, is the temporal
change of airflows.

Some means to improve the performance of the
measurement system can be proposed. The error pro-
duced by the linear interpolation is reduced by shortening
the time interval A ¢. Therefore the use of a quick response
gas analyser will contribute to the improvement of pre-

(¢/s)
n

A 310
[min}

Fig.16.Successive identification airflow rate from chamber-6 to
outside.

(¢
20

A—‘"\—’\.—f

-20

0 540

[min]

Fig.17.Successive identification airflow rate from outside to
chamber-6.

Table 3. Air temperature (°C)

M 6T
@ 784
B 7159
@ 783
(5) 846
(6)  8.54
(N 649
(8) 658
9  13.08

(10)  B8.64




362

H. Okuyama

Table 4. Estimated error of airtlow rate in standard deviation (dm®/s)

TCy T2 LT O s GCig,s GChroe TCye.z Ty [P
0.26 4.77 4.31 365 3.40 4.23 594 7.01 4.92
GCs A 0Cq 1a [ o OCs 5y G5y TCyh0 TCas OC3 0 acy s
2.40 1.56 1.03 1.07 1.36 1.39 1.54 205 3.63
Gy 1a GCyx ¢y 0 GCxy OCy 3 [ GCy 10 GCqs TCq4
297 3.13 2.85 S.47 3.64 2.74 1.96 4.51 3.75
Glys 0Cyy GCy G0 OCa s aly, GCy g 0C) & ac,
303 3.09 3.53 1.57 1.46 2.13 1.94 3.46 2.56

Fig.18. View of experimental house.

cision. Another problem is the interval of time integration
for the system identification. In the present system, the
time interval is equal to the measurement interval of one
minute. However, it can be supposed that the shorter the
interval of time integration for the system identification,
the more the identification result is affected by noise,
which may have a negative influence on the result. Even
if the measurement data has fluctuation due to noise,
this can be smoothed by applying the moving average.
Consequently, the negative influence of the fluctuation
may be dissolved through increasing the time integration
interval for the system identification to, say 5 or 10 min.

12. CONCLUSION

The tracer gas transfer and diffusion system in the
multi-chamber airflow measurement can be modeled by
the thermal network. The thermal network model is a
general model of the spatially discretized and lumped
parameterized transfer and diffusion system. The thermal
network model can be mathematically expressed by a
general state equation. This state equation is composed
of three kinds of parameters m;, c; and r;;. The parameter
c; represents airflow rate in tracer gas transfer and
diffusion system, and in case of heat transfer system it
means thermal conductance. Two methods of estimating
these parameters were introduced on the basis of the least
square method. The batch identification method
estimates a set of parameters at one time with the total

Fig.19. Setting of measurement system in kitchen.

measurement data of state and input variables for a cer-
tain length of period. The successive identification
method estimates the parameters iteratively with the
measurement data obtained at short intervals Az In the
latter method, the parameters are simultaneously esti-
mated with the measurement process of state and input
values. Moreover, the evaluation method of the errors
involved in the estimated results and several indices were
introduced, these are based on the residual analysis.
Based on this identification theory, a multi-chamber air-
flow measurement system was developed, and several
experiments were conducted with it. By employing the
test house in the National Swedish Institute for Building
Research, verification experimentation was carried out
in the most simple two-room case. As a result, a
maximum error of about 20% against the true airflow
rate was recognized. The measurement of tracer gas con-
centration takes much longer time than that of tem-
perature. Therefore, with only a single gas analyser,
sequential measurements in a multi-chamber system
would involve larger error than for temperature measure-
ment. This is considered to be the major cause of the
error. Next, in the experiment on a two-storey wooden
house in Tokyo, it was shown that this measurement
system can cope with houses of up to nine rooms. The
results proved that, the method of using a single kind of
tracer gas can deal with a greater number of rooms than
methods which use multiple tracer gases. Through these
experiments, this system identification theory has been
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proven to be feasible. However, concerning the hardware
of the measurement system, future improvement is
expected.
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