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Constraint equations for the system identification coefficients 
and contribution equations to the least squares method

Here explain a vector a containing coefficients to be identified 
and constraint equations of these coefficients.

In this example, the first row shows previous slides eq.(12), second row shows symmetry of 
ck,i=ci,k, third row shows the flow balance of the generalized conductance concerning node i . 

An example of contents of the matrix S, vectors d and a are as following (13), (14) and (15).
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These can be expressed as a simple matrix and 
vector equation (16).

For the application of least squares we 
define a error vector as (17).

An evaluating function Jc of the least squares method is written by equation (18).

By differentiating the evaluation function Jc with 
respect to vector a, we obtain equation (19).

The constraint equation that contributes to half of 
the total least squares is obtained as equation (5) 
from equation (19).


